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Abstract

We study a particular set of chemical reaction networks related to the emer-
gence of homochirality. Each element of this set is a chemical reaction mechanism
intended to produce homochirality. Those mechanisms contains a pair of enan-
tiomers, the central subject of this study, which are involved in a series of reactions
that produce and consume them. The other species concentrations are considered
constant. The reactions of each mechanism are arranged into six categories, that
we have called synthesis, first order decomposition, autocatalytic, second order de-
composition, non-enantioselective and inhibition reactions. The reaction networks
must satisfy a symmetry constraint that is related to the kinetic and thermodynamic
indiscernibility of the isomers. We investigate the emergence of homochirality phe-
nomena in those networks. To this end, we introduce a mathematical notion of
homochiral states that we call Frank states, and which seems to be deeply related
to the occurrence of homochiral dynamics. We find sufficient and necessary con-
ditions for the existence of Frank states, and we use those results to develop an
algorithmic tool. This tool can be used to recognize networks admitting homochi-
ral states, and in given case, it can also be used to construct Frank states of the
input-network. We test the mathematical machinery, and the aforementioned algo-
rithm, analyzing the well-established models of Frank and Kondepudi-Nelson. We
were able to show that those two networks admit homochiral dynamics. We use our
tools to analyze three further network models derived from the Kondepudi-Nelson
model and which were adapted to the Strecker synthesis of amino acids.
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1 Introduction

Life is a mysterious thing, full of complex mechanisms and phenomena, and one of them
is homochirality. This particular characteristic of life corresponds to the fact that some
special molecules have identical chemical composition but they are the specular image of
each other, exactly as our left and right hands. The most peculiar thing about homochi-
rality is that when we synthesize this kind of molecules, most of the time the products are
racemic. However, in living things, the involved chiral molecules are homochiral as d-sug-
ars in DNA and l-amino acids in proteins [1]. It is known that homochirality is critical
for molecular recognition and replication processes, and would thus seem to be a prereq-
uisite for the origin of life [2]. Nevertheless, the homochirality of biological molecules is a
phenomenon that is not completely understood [3].

The two forms of a chiral molecule, called enantiomers [4], have similar physical and
chemical properties, and therefore both enantiomers should form in equal amounts (a
racemic mixture), if the synthesis is made in isotropic phase and in the absence of any
chiral object which could favor an asymmetric synthesis. It is important to mention
that asymmetric synthesis has become a very active field of research, and we know how to
synthesize a lot of homochiral compounds [5], especially if asymmetric catalysis is used [6].
However, in this work, we restrict ourselves to the usual laboratory conditions that are
not suitable for asymetric synthesis. Then, we are considering only the simple isotropic
conditions for which asymmetric synthesis becomes unlikely. It seems that under isotropic
conditions the homochirality of living molecules is non-consistent with the basic models
of chemical kinetics [7, 8]. We would like to show that this is not the case, we would like
to show that chemical reaction networks containing a single pair of enantiomers are likely
to evolve towards homochiral states.

Now, given a chemical network involving a pair of enantiomers, we say that it exhibits
homochiral behavior, if and only if, there exists a racemic steady state, which after being
perturbed gives place to homochiral dynamics. This type of dynamics corresponds to those
dynamics along which the concentration of one of the two enantiomers vanishes while the
concentration of the other grows. We are interested in the homochirality phenomenon
observed in nature: Homochiral dynamics seem to be frequent [9].

There are many different theories that want to explain the homochirality phenomenon
[1,7,9]. We, in turn, do not want to explain this phenomenon, we just want to show that it
is consistent with the theoretical models of chemical kinetics. We would like to show that
given a chemical network involving a pair of enantiomers (isomers), and according with



the mathematical models of chemical kinetics, it is very likely that, after being perturbed,
the network is driven towards a homochiral dynamics.

This work is organized into nine sections including the introduction. The first one is
this introduction. In section 2 we present the basic concepts of chemical networks and
network dynamics. In section 3 we introduce the necessary concepts of stability analysis.
In section 4 we introduce Chiral Networks which are the chemical networks that we want
to analyze. Moreover, we introduce a classification of chemical reactions that becomes
important in the stability analysis of chiral networks. In section 5 we begin the stability
analysis of chiral networks. We find a mathematical criterion that seems to be related
to the emergence of homochirality. We use the well known Frank Model [10] to test our
criteria. In section 6 we introduce the notion of Frank States, and we argue that these are
the states that are related to the emergence of Homochirality. In this section, we find suf-
ficient and necessary conditions for the existence of Frank States. In section 7 we develop
an algorithm for the computation of Frank States. A computer program implementing the
algorithm, and written in Phyton, was developed to analyze different chemical models and
to obtain the ranges where the kinetic rate constants give place to Frank states. In section
8 we study the Kondepudi-Nelson Model (KN, for short) [11] as well as three further mod-
els that are derived from KN and adapted to the Strecker synthesis of amino acids [12].
In the first one, the l-X + d-X −−→ Product reaction of the KN Model is replaced by
two reactions that produce the L and D amino acids; we call this model KNS-AP. In the
second mechanism, we add to the KNS-AP model two non-enantioselective autocatalitic
reactions [13], also called limited enantioselective reactions [14], and we call this model
KNS-AP-LES. The last network is the KN model plus a set of non-enantioselective auto-
catalitic reactions, and it is called the KNS-LES model. The theoretical analysis indicates
that KN, KNS-AP-LES and KNS-LES networks are unstable and give place to homochiral
dynamics. The theoretical analysis also indicates that the KNS-AP network is stable and
that all their stationary states are racemic. Numerical simulations§ of each one of those
models were executed, and none of them contradicted with the theoretical analysis [15].
The simulations indicate that, beginning with a Frank state and a racemic concentration,
the dynamics of the unstable networks tend to evolve towards homochiral concentrations.
If the simulations are initialized at states that are not Frank states, then the dynamics
evolve towards racemic concentrations. On the other hand, the computer experiments
indicate that for KNS-AP all the dynamics evolve towards racemic concentrations, even if

§All simulations were executed using software developed for this purpose. The software is available at
https://gitlab.com/homochirality/chemulator.



those dynamics are initialized at non-racemic concentrations. The reported experimental
results are positive, and they suggest that our notion of Frank state is appropriate and
effectively related to the emergence of homochirality. We finish in section 9 with some
concluding remarks.

The present work is related to all those previous works that are devoted to the stability
analysis of chemical reactions networks (see for instance [16–18], and references therein).
Our work is also related to all those previous works devoted to the mathematical and
chemical analysis of homochirality (see for instance [11,19,20], and references therein).

The main contributions of this work are the following: We identify a mathematical
condition that is related to the emergence of homochirality; the steady states satisfying
the condition are called Frank states. We find a set of linear inequalities (that we call
Frank inequalities) characterizing the set of Frank states. We get two important results
from the analysis of Frank inequalities:

1. We design an elementary and efficient algorithm that can be used to compute Frank
states of any chiral network given as input.

2. We prove a formal version of a claim that is first indebted to Frank, namely: Auto-
catalysis is a necessary condition for the emergence of homochirality.

And, last but not least, we can conclude that homochirality is a likely phenomenon,
and that any network admitting homochiral dynamics is likely to evolve towards homochi-
ral states.

2 Basic concepts of chemical networks

A chemical reaction over the chemical species X1, ..., Xn is an expression of the form

α1X1 + · · ·+ αnXn → β1X1 + · · ·+ βnXn,

where α1, ..., αn and β1, ..., βn are small positive integers (some of which could be equal
to zero).

The above expression indicates that the mixture of α1 units of X1, ..., and αn units of
Xn gives place to β1 units of X1 , ..., and βn units of Xn.

Definition 1. A chemical network over the species {X1, ..., Xn} is a set of chemical
reactions, say {R1, ..., Rr}, over this set of species.



Given a chemical network Ω = {(X1, ..., Xn) , (R1, ..., Rr)} we use the expression

α1iX1 + · · ·+ αniXn → β1iX1 + · · ·+ βniXn

to denote the reaction Ri.

Notation. Let Ω = {(X1, ..., Xn) , (R1, ..., Rr)} be a chemical network, we use variables
x1, ..., xn to denote the concentrations of the n chemical species at a given instant.

Chemical reactions occur at different rates. Let (k1, ..., kr) be a vector of rate constants
related to the reactions R1, ..., Rr. We know that the dynamics of network Ω is determined
by the law of mass action [21]. Thus, the dynamics of Ω is captured by the polynomial
system of differential equations:

dx1

dt
=

r∑
j=1

(ν1j) · kj · xα1j

1
· · · · · xαnj

n

...
dxn

dt
=

r∑
j=1

(νnj) · kj · xαnj

1
· · · · · xαnj

n ,

where νij denote the quantity βij − αij for all i ≤ n and for all j ≤ r. This is the
kind of polynomial systems that we analyse in this work. We say that those systems
are autonomous systems of polynomial differential equations (polynomial systems, for
short). Recall that the variables x1, ..., xn represent the concentrations of the species
X1, ..., Xn and hence the solutions of the above system are supposed to describe the
temporal evolution of those concentrations. It happens that most rate constants should
be considered as variable parameters ranging over an (small) positive interval of the real
numbers. On the other hand, most of those polynomial systems cannot be solved by
analytical means, and for this reason we have to consider a qualitative analysis.

3 Stability analysis of polynomial systems

Consider a polynomial system

dxi

dt
= fi (x1, ..., xn, k1, ..., kr) ; i = 1, ..., n.



We say that (a0,b0) ∈ Rn × Rr is a steady state, if and only if, the equalities

0 = fi (a1, ..., an, b1, ..., br) ; i = 1, ..., n

hold.
If the system is driven to the state x1 = a1, ..., xn = an, under the well controlled

conditions represented by b1, ..., br, then nothing occurs, the system is stuck at a fixed
point of its dynamic.

In real life, steady states are quickly reached because of friction, dissipation, entropy
growth, etc. However, we see dynamics all the time. This happens because physical
systems are continuously perturbed by external noise. Thus, it can be argued that most
of the dynamics that we see every day correspond to dynamics that occur when steady
states are perturbed. According to the later point of view it makes sense to study the
dynamics that occur when one exerts a small perturbation on the steady states of the
system under study.

The qualitative analysis of nonlinear systems studies the dynamics that occur near
the steady states. Steady states can be either stable or unstable. The rough idea is that
all the interesting dynamics occur in the vicinities of unstable states. Then, it becomes
important to develop mathematical and algorithmic tools for the detection of the later
type of states. The later problem can be reduced to matrix analysis.

Let (a0,b0) be a steady state of the system, the jacobian matrix at state (a0,b0) is
the matrix

Ja0,b0
=

[
∂fi
∂xj

(a0,b0)

]
i,j=1,...,n

.

We say that (a0,b0) is a hyperbolic steady state, if and only if, the real part of any λ

eigenvalue of Ja0,b0
is non-null. The Theorem of Grobman-Hartman [22] tells us that the

stability (instability) properties of any hyperbolic state (a0,b0) can be deduced from the
eigen-structure of Ja,b0

.

Definition 2. Let (a0,b0) be a hyperbolic steady state, and let λ1, ..., λn be the eigen-
values of Ja0,b0 . We say that (a0,b0) is λ-stable, if and only if, for all i ≤ n the inequality
Re (λi) < 0 holds. On the other hand, we say that (a0,b0) is λ-unstable, if and only if,
there exists i such that Re (λi) > 0.

We observe that the λ-unstable states are the hyperbolic states that can produce
homochiral dynamics. Thus, our work is to characterize the λ-unstable states that are
related to the occurrence of homochiral dynamics, and to develop algorithmic tools that



allow one to check if a given network admits the existence of the later type of steady
states.

4 Chiral networks

Suppose that Ω = {(I1, I2, X1, ..., Xn) , (R1, ..., Rr)} is a chemical network and suppose
that I1 and I2 represent a pair of enantiomers. Recall that any pair of enantiomers
is indiscernible from the point of view of chemical kinetics. Thus, if the network Ω is
a realistic model of a chemical reaction network it must satisfy a symmetry constraint
related to the pair of enantiomers. The symmetry constraint is the following one:

Given Ri equal to

aI1 + bI2 + c1X1 + · · ·+ cnXn → a∗I1 + b∗I2 + d1X1 + · · ·+ dnXn,

there must exist j ≤ r such that Rj is equal to

bI1 + aI2 + c1X1 + · · ·+ cnXn → b∗I1 + a∗I2 + d1X1 + · · ·+ dnXn.

We say, in the later case, that reactions Ri and Rj are dual reactions.

Remark. If the reaction Rj has the form

aI1 + aI2 + c1X1 + · · ·+ cnXn → bI1 + bI2 + d1X1 + · · ·+ dnXn,

we say that it is a self-dual reaction since it is equal to its dual reaction.

Remark. We have that if Ri and Rj are dual reactions, then their reactions rates con-
stants are the same. The later fact allows us to talk about the reaction rate of the pair
(Ri, Rj).

If the network Ω violates the above symmetry constraint, the designer of this theoret-
ical model has introduced an asymmetry that could explain the occurrence of homochiral
dynamics in Ω, and these cases will not be considered here since the striking character of
the homochirality phenomenon is based on the following fact: Isomers are supposed to be
indiscernible from the point of view of chemical kinetics, and it means that the homochi-
rality phenomenon corresponds to a spontaneous symmetry breaking [23,24]. Observe that
the supposed indiscernibility of isomers is captured by the symmetry constraint discussed



above. If a network Ω satisfies that constraint, we say that Ω is a symmetric network.
From now on, we focus on symmetric networks.

Let Ω = {(I1, I2, X1, ..., Xn) , (R1, ..., Rr)} be a symmetric network. We are interested
in the temporal evolution of the variables i1 and i2 that describe the concentrations of the
enantiomers I1 and I2. One can observe that different types of chemical reactions play
different roles in the evolution of those two variables. Let j ∈ {i1, i2}, we have that

dj

dt
=
∑
l≤r

jl,

where for all l ≤ r the symbol jl denotes the contribution of reaction Rl. We have that
for all l ≤ r, the contribution jl is a monomial in the variables x1, ..., xn, i1, i2, k1, ..., kr.

The specific role played by reaction Rl is completely determined by the monomials
(i1)l and (i2)l . Then, it is a good idea to begin with a classification of reactions that is
based on the different types of monomials contributed by each reaction. We consider six
different types of reactions, there are important heuristic reasons to focus on those six
different types of reactions (see below).

1. We say that the reaction Rl is an enantiomeric synthesis reaction if it has the form

p1X1 + · · ·+ pnXn → I + q1X1 + · · ·+ qnXn,

where I ∈ {I1, I2}. Example: The Strecker reaction [25]

CN

R1 R2

R3

+ HCN CN

R1

H

CN

R2

R3

Let us suppose that I = I1, in this case we have

(i1)l = kl · xp1
1 · · ·xpn

n and (i2)l = 0.

Notice also that
∂ (i1)l
∂i1

=
∂ (i1)l
∂i2

=
∂ (i2)l
∂i1

=
∂ (i2)l
∂i2

= 0.

2. We say that the reaction Rl is an enantiomeric first order decomposition reaction,
abbreviated fo-decomposition, if it has the form

I + d1X1 + · · ·+ dnXn → h1X1 + · · ·+ hnXn,



where I ∈ {I1, I2}. Example: In the Kondepudi-Nelson model [19], we have the
following two fo-decomposition reactions

l-X k−−→ S + T and d-X k−−→ S + T.

Let us suppose that I = I1, we have that

(i1)l = −kl · i1 · xd1
1 · · ·xdn

n and (i2)l = 0.

Moreover, we have

∂ (i1)l
∂i1

= −kl · xd1
1 · · ·xdn

n ,

∂ (i1)l
∂i2

=
∂ (i2)l
∂i1

=
∂ (i2)l
∂i2

= 0.

3. We say that the reaction Rl is an enantiomeric autocatalytic reaction if it has the
form

I + a1X1 + · · ·+ anXn → 2I +m1X1 + · · ·+mnXn.

.

Example: The Soai reaction [26]:

A + B + C* k−−→ 2C*.

Let us suppose I = I1, we have that

(i1)l = kl · i1 · xa1
1 · · ·xan

n and (i2)l = 0.

Then, we have that

∂ (i2)l
∂i1

=
∂ (i2)l
∂i2

=
∂ (i1)l
∂i2

= 0,

∂ (i1)l
∂i1

=
∂ (kl · i1 · xa1

1 · · ·xan
n )l

∂i1
= kl · xa1

1 · · ·xan
n .

.



4. We say that the reaction Rl is a enantiomeric second order decomposition reaction,
so-decomposition for short, if it has the form

2I + de1X1 + · · ·+ denXn → I + g1X1 + · · ·+ gnXn.

Example: In the Kondepudi-Nelson model [19], we have the following two so-
decomposition reactions

2l-X k−−→ S + T + l-X and 2d-X k−−→ S + T + d-X.

If we suppose I = I1, we have

(i1)l = −kl · (i1)2 · xde1
1 · · ·xden

n and (i2)l = 0.

Moreover, we have

∂ (i2)l
∂i1

=
∂ (i2)l
∂i2

=
∂ (i1)l
∂i2

= 0,

∂ (i1)l
∂i1

=
∂
(
−kl · (i1)2 · xde1

1 · · ·xden
n

)
∂i1

= −2kl · i1 · xde1
1 · · ·xden

n .

5. We say that the reaction Rl is a non-enantioselective autocatalitic reaction, abbre-
viated no-enantioselective, if it has the form

I + e1X1 + · · ·+ enXn → I + J + f1X1 + · · ·+ fnXn,

where I, J are the pair of enantiomers.

Example: The authors of reference [13], study a model that include the following
pair of no-enantioselective reactions

A + L k−−→ L + D and A + D k−−→ D + L.

Let us suppose that I = I1. We have that

(i2)l = kl · i1 · xe1
1 · · ·xen

n and (i1)l = 0.



Moreover, we have

∂ (i1)l
∂i1

=
∂ (i1)l
∂i2

=
∂ (i2)l
∂i2

= 0,

∂ (i2)l
∂i1

=
∂ (kl · i1 · xe1

1 · · ·xen
n )

∂i1
= kl · xe1

1 · · ·xen
n .

6. We say that the reaction Rl is an enantiomeric inhibition reaction if it has the form

I1 + I2 + c1X1 + · · ·+ cnXn → C1I1 + C2I2 + u1X1 + · · ·+ unXn.

where C1 and C2 are small positive integers.

Example: The following set of reactions presented in reference [27]

d-R + l-R k−−→ Pachiral, d-R + l-R k−−→ A + d-R and d-R + l-R k−−→ A + l-R.

We have that

(i1)l = (C1 − 1) · kl · i1 · i2 · xc1
1 · · ·xcn

n ,

(i2)l = (C2 − 1) · kl · i1 · i2 · xc1
1 · · ·xcn

n .

Then, we have

∂ (i1)l
∂i1

= (C1 − 1) · kl · i2 · xc1
1 · · ·xcn

n ,

∂ (i1)l
∂i2

= (C1 − 1) · kl · i1 · xc1
1 · · ·xcn

n ,

∂ (i2)l
∂i1

= (C2 − 1) · kl · i2 · xc1
1 · · ·xcn

n ,

∂ (i2)l
∂i2

= (C2 − 1) · kl · i1 · xc1
1 · · ·xcn

n .

Notice that Rl is self-dual, if and only if, C1 = C2. Also, it is important to remark
that the class of inhibition reactions is constituted by two different types of reactions:
Cross inhibition reactions and purely destructive inhibitions. Cross inhibitions are
the reactions for which C1 + C2 > 0, while purely destructive inhibitions are the
inhibitions for which C1 = C2 = 0.



The above classification into six categories is not a full classification of chemical re-
actions. However, it works well for the practical purposes of this work. Moreover, we
have:

• Molecular chemistry tells us that most chemical reactions have the form

X + Y → a1X1 + · · ·+ anXn,

that is: Most chemical reactions involve just two reactants. We say that those
reactions are binary reactions. Ternary reactions are scarce but could occur, while
reactions of higher orders are very unlikely [28,29].

• Chemical reactions are reversible. Notice that this fact, together with the previous
one, implies that most elemental chemical reactions are constituted by no more than
three reactants and no more than three products.

• Recall that given a chemical reaction, it must be possible to decompose it as a
sequence of elementary steps, and elementary steps are usually binary [29]. Thus,
it makes sense to restrict the attention to binary reactions. There is only one type
of binary chemical reactions that is not included, in our six members classification.
The seventh category is constituted by the pair of binary reactions

{2I1 → I1 + I2, 2I2 → I1 + I2} ,

called “racemization” or “chiral inversion”. We will not consider this type of re-
actions because they do not occur in the models that we want to analyze. It is
worth to remark that those reactions cannot favor the emergence of Homochirality.
However, the analytic machinery can be extended to include this additional type of
reactions, but that work will not be done here.

Let us introduce a signature for chiral networks, which are the symmetric networks
that we want to study.

Definition 3. A chiral network is an 8-tuple (X ,R,R1,R2,R3,R4,R5,R6), where:

1. X = {I1, I2, X1, ..., Xn} is a set constituted by n + 2 chemical species, and species
I1 and I2 represent the pair of enantiomers.



2. R is the set of reactions, and

R = R1 ⊔R2 ⊔R3 ⊔R4 ⊔R5 ⊔R6.

That is: The set R is equal to the disjoint union of R1,R2,R3,R4,R5 and R6.

3. The set R1 is equal to {P1, P
∗
1 , P2, P

∗
2 , ..., Pt, P

∗
t }, where for all i ≤ t the pair Pi, P

∗
i

is a pair of dual reactions, and for all i the reaction Pi is a synthesis reaction of the
form

pi1X1 + · · ·+ pinXn → I1 + qi1X1 + · · ·+ qinXn,

4. The set R2 is equal to {D1, D
∗
1, D2, D

∗
2, ..., Dl, D

∗
l }, where for all i ≤ l the pair

Di, D
∗
i is a pair of dual reactions, and for all i the reaction Di is a fo-decomposition

reaction of the form

I1 + di1X1 + · · ·+ dinXn → hi1X1 + · · ·+ hinXn.

5. The set R3 is equal to {A1, A
∗
1, A2, A

∗
2, ..., Ar, A

∗
r}, where for all i ≤ r the pair Ai, A

∗
i

is a pair of dual reactions, and for all i the reaction Ai is an autocatalytic reaction
of the form

I + ai1X1 + · · ·+ ainXn → 2I +mi1X1 + · · ·+minXn.

6. The set R4 is equal to {Q1, Q
∗
1, Q2, Q

∗
2, ..., Qw, Q

∗
w}, where for all i ≤ w the pair

Qi, Q
∗
i is a pair of dual reactions, and for all i the reaction Qi is a so-decomposition

reaction of the form

2I1 + dei1X1 + · · ·+ deinXn → I1 + fi1X1 + · · ·+ finXn.

7. The set R5 is equal to
{
E1, E

∗
1 , E2, E

∗
2 , ..., Ep, E

∗
p

}
, where for all i ≤ p the pair

Ei, E
∗
i is a pair of dual reactions, and for all i the reaction Ei is a no-enantioselective

reaction of the form

I2 + ei1X1 + · · ·+ einXn → I1 + I2 + fi1X1 + · · ·+ finXn.

8. The set R6 is equal to {C1, C
∗
1 , C2, C

∗
2 , ..., Cs, C

∗
s}, where for all i ≤ s the pair Ci, C

∗
i



is a pair of dual reactions, and for all i the reaction Ci is an inhibition reaction of
the form

I1 + I2 + ci1X1 + · · ·+ cinXn → Ci1I1 + Ci2I2 + ui1X1 + · · ·+ uinXn.

We say that Ci1 + Ci2 − 2 is the stoichiometric coefficient of the pair (Ci, C
∗
i ) and

we use the symbol Sc
i to denote it. If Ci is self-dual, we work with the pair (Ci, Ci) .

We say that Ci1 − 1 is the stoichiometric coefficient of the (self-dual) pair (Ci, Ci),
and we use the symbol Sc

i to denote it.

5 Stability analysis of chiral networks

Given a chiral network Ω = {X ,R,R1,R2,R3,R4,R5,R6}, we are interested in describ-
ing the dynamics of the concentration variables i1 and i2. Then, we have to analyze the
system

d (i1)

dt
=

∑
j≤t

kp
j · x

pj1
1 · · · · · xpjn

n −
∑
j≤l

kd
j · i1 · x

dj1
1 · · · · · xdjn

n

+
∑
j≤r

ka
j · i1 · x

aj1
1 · · · · · xajn

n −
∑
j≤w

kde
j · i21 · x

dej1
1 · · · · · xdejn

n

+
∑
j≤p

ke
j · i2 · x

ej1
1 · · · · · xejn

n +
∑
j≤s

Sc
j · kc

j · (i1 · i2) · x
cj1
1 · · · · · xcjn

n

d (i2)

dt
=

∑
j≤t

kp
j · x

pj1
1 · · · · · xpjn

n −
∑
j≤l

kd
j · i2 · x

dj1
1 · · · · · xdjn

n

+
∑
j≤r

ka
j · i2 · x

aj1
1 · · · · · xajn

n −
∑
j≤w

kde
j · i22 · x

dej1
1 · · · · · xdejn

n

+
∑
j≤p

ke
j · i1 · x

ej1
1 · · · · · xejn

n +
∑
j≤s

Sc
j · kc

j · (i1 · i2) · x
cj1
1 · · · · · xcjn

n

Let us fix some notation.

• The symbol kp
j denotes the rate constant of the pair

(
Pj, P

∗
j

)
.

• The symbol kd
j denotes the rate constant of the pair

(
Dj, D

∗
j

)
.

• The symbol ka
j denotes the rate constant of the pair

(
Aj, A

∗
j

)
.

• The symbol kde
j denotes the rate constant of the pair

(
Qj, Q

∗
j

)
.

• The symbol ke
j denotes the rate constant of the pair

(
Ej, E

∗
j

)
.



• The symbol kc
j denotes the rate constant of the pair

(
Cj, C

∗
j

)
.

In this work we consider a simplified scenario in which the concentrations of all the
secondary species remain constant. We can suppose that the constant concentrations of
secondary species are all equal to 1. If we do the later we get that

d (i1)

dt
=

∑
j≤t

kp
j −

∑
j≤l

kd
j · i1 +

∑
j≤r

ka
j · i1

−
∑
j≤w

kde
j · i21 +

∑
j≤p

ke
j · i2 +

∑
j≤s

Sc
j · kc

j · (i1 · i2) ,

d (i2)

dt
=

∑
j≤t

kp
j −

∑
j≤l

kd
j · i2 +

∑
j≤r

ka
j · i2

−
∑
j≤w

kde
j · i22 +

∑
j≤p

ke
j · i1 +

∑
j≤s

Sc
j · kc

j · (i1 · i2) .

Remark. From a mathematical point of view, the scenario considered in this paper is
equivalent to the scenario determined by the following constraint: Chiral networks contain
only three species, the two enantiomers and only one secondary species.

Notice that, under the later assumption, the steady states can be succinctly described
by short tuples. Given a chiral network Ω = {X ,R,R1,R2,R3,R4,R5,R6}, a state of
the network can be completely described by a vector

(i1, i2,k0) ∈ R2+t+l+r+w+p+s
+ ,

where
k0 =

(
kp
1, ..., k

p
t , k

d
1 , ..., k

d
l , k

a
1 , ..., k

a
r , k

de
1 , ..., kde

w , ke
1, ..., k

e
p, k

c
1, ..., k

c
s

)
.

Remark. We say that the state (i1, i2,k0) is racemic, if and only if, i1 = i2.

Recall that we are interested in the racemic λ-unstable states. Then, we have to
compute the jacobian matrix of the system at state (a, a,k0). First, we set

b (a,k0) = −
∑
j≤l

kd
j +

∑
j≤r

ka
j − 2a

∑
j≤w

kde
j + a

∑
j≤s

Sc
j · kc

j ,

and then we set
c (a,k0) =

∑
j≤p

ke
j + a

∑
j≤s

Sc
j · kc

j .



After some computations we get that

Ja,a,k0
=

(
b (a,k0) c (a,k0)

c (a,k0) b (a,k0)

)
,

and we get as a corollary the following theorem.

Theorem 1. The jacobian matrix Ja,a,k0 is equal to the symmetric matrix

(
b (a,k0) c (a,k0)

c (a,k0) b (a,k0)

)
,

whose eigenvalues are equal to

{b (a,k0)− c (a,k0) , b (a,k0) + c (a,k0)} .

Proof. It only remains to compute the eigenvalues of Ja,a,k0
. First we compute

det

(
b (a,k0)− λ c (a,k0)

c (a,k0) b (a,k0)− λ

)
.

We have

det
(
Ja,a,k0

)
= (b (a,k0)− λ)2 − c (a,k0)

2

= (b (a,k0)− λ+ c (a,k0)) (b (a,k0)− λ− c (a,k0))

= ((b (a,k0) + c (a,k0))− λ) ((b (a,k0)− c (a,k0))− λ)

and hence we get that the eigenvalues of Ja,a,k0
are equal to

b (a,k0)± c (a,k0) ,

and the theorem is proved

The type of dynamics that occur near a hyperbolic state are determined by the eigen-
values of its jacobian matrix. Recall that we are interested in computing λ-unstable steady
states giving place to homochiral dynamics. We conjecture that these states can be fully
characterized in terms of their eigen-structure. Let us review a famous model of chemical
network exhibiting homochirality. We study this small and well known model because it
can give us some clues about which are the λ-unstable states related to homochirality.



5.1 Frank model: A network exhibiting homochirality

In 1953, Charles Frank proposed a model to demonstrate that homochirality is a conse-
quence of autocatalysis [10]. Frank’s model corresponds to the abstract network

ΩF = {(I1, I2, X) , (I1 +X → 2I1, I2 +X → 2I2, I1 + I2 → X)} .

Frank model is a very interesting mathematical model of homochirality: All their
steady states are unstable, and all those states give place to homochiral dynamics.

We observe that ΩF is a chiral network that can be represented as the 8-tuple

{X ,R, ∅, ∅, (I1 +X → 2I1, I2 +X → 2I2) , ∅, ∅, (I1 + I2 → X, I1 + I2 → X)} .

Remark. Observe that R6 contains the single reaction I1 + I2 → X, and notice that
this reaction is self-dual. Therefore, we say that R6 is constituted by the pair (I1 + I2 →
X, I1 + I2 → X)

The dynamic of the above chiral network is governed by the equations

d (i1)

dt
= ka

1 · i1 − kc
1 · i1 · i2.

d (i2)

dt
= ka

1 · i2 − kc
1 · i1 · i2.

Let (i, i, ka
1 , k

c
1) be a racemic state. We use the symbol (i, i,k0) to denote this state,

where k0 is equal to (ka
1 , k

c
1) . If (i, i,k0) is a steady state, the equality

ka
1 · i = kc

1 · i2

must hold, and hence ka
1 = kc

1 · i. The jacobian matrix, denoted by Ji,i,k0 , is equal to

(
ka
1 − kc

1 · i −kc
1 · i

−kc
1 · i ka

1 − kc
1 · i

)
.

And the eigenvalues of Ji,i,k0 are equal to {ka
1 ,−kc

1 · i} .
If (i, i,k0) is a non-null steady state, then it is hyperbolic and λ-unstable. Moreover,

it satisfies the inequalities

ka
1 = b (i,k0)− c (i,k0) > 0,

−kc
1 · i = b (i,k0) + c (i,k0) < 0.



6 Homochiral states

The analysis of the Frank model shows that the inequalities

b (a,k0)− c (a,k0) > 0 and b (a,k0) + c (a,k0) < 0

always hold. On the other hand, the theoretical analysis of the model as well as multiple
simulations indicate that all its steady states are unstable and give place to homochiral
dynamics. It happens that the above inequalities, which we call Frank inequalities, are
related to this fact.

Given a matrix (
b c

c b

)
,

the eigenvectors associated to b− c are the vectors in the set {(d,−d) : d ∈ R}, while the
eigenvectors associated to b + c are the vectors in the set {(d, d) : d ∈ R} . Consider the
linear system (

dx
dt

dy
dt

)
=

(
b c

c b

)(
x

y

)
,

we have that the general solution of the system is equal to(
x

y

)
= A

(
e(b−c)t

−e(b−c)t

)
+B

(
e(b+c)t

e(b+c)t

)
.

Then, if the inequalities b − c > 0 and b + c < 0 both hold, any perturbation of the
steady state (0, 0) gives place to homochiral dynamics: The concentration of one of the
two species grows, while the concentration of the other one decreases. Now suppose that
S is a polynomial system and let s be a hyperbolic steady state of S. We use the symbol
Js to denote the linear system that is given by the jacobian matrix at state s. We have
that the flow of S near the state s is topologically conjugated to the flow of Js near the
steady state 0 (see [30]). The later fact suggests that both flows behave in a similar
way when time goes to infinity, and it suggests that any racemic state satisfying Frank
inequalities gives place to homochiral dynamics. The notion of topological conjugation
(The Grobman-Hartman Linearization Theorem [22]) is not strong enough as to imply
that homochiral dynamics are implied by Frank inequalities. However, there are further
qualitative and geometrical reasons to associate those two inequalities to the (frequent)
emergence of the later type of dynamics.



Definition 4. Given the network Ω = {X ,R,R1,R2,R3,R4,R5,R6}, and given the
steady state (a, a,k0), we say that it is a Frank state, if and only if, the inequalities

∑
j≤r

ka
j −

(∑
j≤l

kd
j + 2a

∑
j≤w

kde
j +

∑
j≤p

ke
j

)
> 0,

∑
j≤r

ka
j +

∑
j≤p

ke
j + 2a

∑
j≤s

Sc
j · kc

j −

(∑
j≤l

kd
j + 2a

∑
j≤w

kde
j

)
< 0.

both hold.

The notion of Frank state is a mathematical notion that could be unrelated to the
emergence of homochiral dynamics. However, we are strongly convinced that the later is
not the case. We will provide some evidence concerning this issue (see below the section
on the “Computational analysis of chiral networks: Experimental results”), but before of
this we would like to observe that:

Remark. Let s be a Frank state

1. State s is hyperbolic

2. State s is a saddle point.

The above two facts allow us to claim that the notion of Frank states is a relevant
mathematical notion.

Theorem 2. Let Ω = {X ,R,R1,R2,R3,R4,R5,R6} be a chiral network admitting
Frank states, we have that R3,R6 ̸= ∅.

Proof. First, we prove that autocatalytic reactions are necessary. Observe that the in-
equality (∑

j≤l

kd
j + 2a

∑
j≤w

kde
j +

∑
j≤p

ke
j

)
≥ 0

holds for any steady state (a, a,k0) . Then, if the inequality

∑
j≤r

ka
j −

(∑
j≤l

kd
j + 2a

∑
j≤w

kde
j +

∑
j≤p

ke
j

)
> 0

holds, we have that

∑
j≤r

ka
j >

(∑
j≤l

kd
j + 2a

∑
j≤w

kde
j +

∑
j≤p

ke
j

)
≥ 0.



Then, we have that
∑
j≤r

ka
j must be larger than zero, and it clearly implies that R3 ̸= ∅.

Now suppose that

∑
j≤r

ka
j −

(∑
j≤l

kd
j + 2a

∑
j≤w

kde
j +

∑
j≤p

ke
j

)
> 0

Then, if the inequality

∑
j≤r

ka
j +

∑
j≤p

ke
j + 2a

∑
j≤s

Sc
j · kc

j −

(∑
j≤l

kd
j + 2a

∑
j≤w

kde
j

)
< 0

also holds, we have that there are inhibition reactions, which are more destructive than
productive. The later assertion is true given that the inequality

∑
j≤r

ka
j +

∑
j≤p

ke
j −

(∑
j≤l

kd
j + 2a

∑
j≤w

kde
j

)
> 0

holds, and it implies that the inequality(∑
j≤r

ka
j +

∑
j≤p

ke
j −

(∑
j≤l

kd
j + 2a

∑
j≤w

kde
j

))
+ 2a

∑
j≤s

Sc
j · kc

j < 0

can be satisfied only if the condition
∑
j≤s

Sc
j · kc

j < 0 is fulfilled. Then we have that R6 ̸= ∅

and the theorem is proved.

Remark. Notice that we have given a formal proof to an old claim of Frank [10], namely:
Autocatalytic reactions (R3 ̸= ∅) are necessary for homochirality (for the existence of
Frank states).

Definition 5. We say that a chiral network Ω is a λ-homochiral network, if and only if,
network Ω admits Frank states.

We want to solve the following two tasks:

1. Recognizing the networks that are λ-homochiral.

2. Given a λ-homochiral network Ω, compute as many as possible Frank states of Ω
(sample the set of Frank states of Ω).

Notice that we have partially solved the first problem: Theorem 2 gives us a necessary
condition for the existence of Frank states (condition R3,R6 ̸= ∅).



Definition 6. Given a chiral network Ω = {X ,R,R1,R2,R3,R4,R5,R6}, we say that
it is an autocatalytic network, if and only if, R3 ̸= ∅, and we say that it is an inhibition
network, if and only if, R6 ̸= ∅ and the later set contains a reaction whose stoichiometric
coefficient is negative.

From now on we restrict our attention to inhibition networks that are autocatalytic.

Theorem 3. Let Ω = {X ,R,R1,R2,R3,R4,R5,R6} be a chiral network, we have that
Ω admits Frank states, if and only if, Ω is an inhibition network that is autocatalytic.

Proof. We already know that λ-homochiral networks have autocatalytic and include in-
hibition reactions. We have to prove that the later two conditions are sufficient for the
existence of Frank states.

Let Ω be an autocatalytic and inhibition network. Given I ⊆ {1, 2, 4, 5}, we suppose
that Ω is a network such that

Ri is non-empty, if and only if, i ∈ I ∪ {3, 6} ,

and hence we prove that Ω admits Frank states. We make the work for I = {1, 2, 4, 5}
and I = {2, 4, 5}. The remaining fourteen (14) cases are similar and we omit them. First
we suppose that I = {1, 2, 4, 5}. It means that R1,R2,R4,R5 ̸= ∅. Consider the system
of homogeneous linear inequalities given by

A− (D + 2DE + E) > 0

A+ E − (D + 2DE + 2C) < 0

D +DE + C − E − A− P = 0

P,D,A,DE,E,C > 0

We say that this is The Master System of Inequalities for this type of Networks. We
notice that the above system has positive solutions, for instance

P = D = DE = E = 1, A = C = 5

is one of those solutions. We show that if we pick a solution of the above system, we can
use it to construct Frank states of Ω. Thus, let

(P0, D0, A0, DE0, E0, C0)



be a solution to the master system. First, we compute kc
1, ..., k

c
s ∈ R+ such that the

equality ∑
j≤s

Sc
j · kc

j = −C0

holds. Notice that this is possible, since there exists j ≤ s such that the stoichiometric
coefficient Sc

j is negative. Then, we compute positive values for

kp
1, ..., k

p
t , , k

d
1 , ..., k

d
l , k

a
1 , ..., k

a
r , k

de
1 , ..., kde

w , ke
1, ..., k

e
p

such that the equalities

∑
j≤p

kp
j = P0,

∑
j≤l

kd
j = D0,

∑
j≤t

ka
r = A0,∑

j≤w

kde
j = DE0, and

∑
j≤p

ke
j = E0

hold. If we set a = 1 and

k =
(
kp
1, ..., k

p
t , k

d
1 , ..., k

d
l , k

a
1 , ..., k

a
r , k

de
1 , ..., kde

w , ke
1, ..., k

e
p, k

c
1, ..., k

c
s

)
,

we get a racemic λ-homochiral state (a, a,k) which satisfies Frank inequalities. Then, we
have that Ω is λ-homochiral. Notice that each one of the six variables occurring in the
master system represents the total contribution of a certain type of reactions. Thus, for
instance, the variable A represents the contribution of the set of autocatalytic reactions.

Now, given I ⊆ {1, 2, 4, 5}, and knowing the master system for {1, 2, 4, 5}, we have
the corresponding one for any I by simply deleting the variables that are related to empty
sets of reactions. Suppose for instance that I = {2, 4, 5}. The master system for this type
of networks is given by

A− (D + 2DE + E) > 0

A+ E − (D + 2DE + 2C) < 0

D +DE + C − E − A = 0

D,A,DE,E,C > 0

and this system has solutions, as for example

A = 5, D = DE = E = 1, C = 4.



Then, we pick a solution of the later system and we use it to construct a Frank state.
To accomplish the later task we proceed exactly as we did above with the first type of
network.

7 An algorithm

We can use the previous results to develop an algorithm that can be used to detect λ-
homochiral networks and their Frank states. The algorithm receives as input a quiral
network

Ω = {X ,R,R1,R2,R3,R4,R5,R6},

where:

1. X = {I1, I2, X1, ..., Xn} .

2. R1 = {(P1, P
∗
1 ) , ..., (Pt, P

∗
t )} .

3. R2 = {(D1, D
∗
1) , ..., (Dl, D

∗
l )} .

4. R3 = {(A1, A
∗
1) , ..., (Ar, A

∗
r)} .

5. R4 = {(Q1, Q
∗
1) , ..., (Qw, Q

∗
w)} .

6. R5 =
{
(E1, E

∗
1) , ...,

(
Ep, E

∗
p

)}
.

7. R6 = {(C1, C
∗
1) , ..., (Cs, C

∗
s )} .

Let us suppose that Ω is a network such that Ri ̸= ∅ for all i = 1, ..., 6. The algorithm
works, on the given input, as follows;

1. Check if R3 ̸= ∅. If the checking is positive go to step 2, otherwise halt and print:
The network does not admit Frank states.

2. Compute the stoichiometric coefficients of the pairs (C1, C
∗
1) , ..., (Cs, C

∗
s ). If there

exists j ≤ s such that Sc
j < 0 go to step 3, otherwise halt and print: The network

does not admit Frank states.

3. Compute positive values for

P,D,A,DE,E and C



such that the system of linear inequalities (and linear equalities)

0 < A− (D + 2DE + E) ,

0 > A+ E − (D + 2DE + 2C) ,

0 = P + A+ E − (D +DE + C) ,

is satisfied.

4. Compute positive values for

kp
1, ..., k

p
t ; k

d
1 , ..., k

d
l ; k

a
1 , ..., k

a
r ; k

de
w , ..., kde

w ; ke
1, ..., k

e
p; and kc

1, ..., k
c
s

such that the equations

P =
∑
j≤t

kp
j , E =

∑
j≤e

ke
j , D =

∑
j≤l

kd
j , DE =

∑
j≤w

kde
j ,

A =
∑
j≤r

ka
j and − C =

∑
j≤s

Sc
j · kc

j

are satisfied.

5. Set

sΩ = (1, kp
1, ..., k

p
t , k

d
1 , ..., k

d
l , k

a
1 , ..., k

a
r , k

de
1 , ..., kde

w , ke
1, ..., k

e
p, k

c
1, ..., k

c
s),

and print sΩ.

The theorems in previous section guarantee that the above algorithm is correct.

7.1 Runtime analysis of the algorithm

Given a network
Ω = {X ,R,R1,R2,R3,R4,R5,R6},

we say that its size is equal to |X |+ |R|, which is the number of species plus the number
of reactions. We would like to observe that the above algorithm can be used to efficiently
analyze chiral networks of any size. Notice that the first two steps of the above algorithm
run in time O (s), where s = |R6|. The later means that checking if a network is λ-
homochiral can be made in linear time in the number of inhibition reactions. On the



other hand, the whole algorithm runs in time O (|R|), and it means that it is a linear
time algorithm. Moreover, the algorithm is correct and the analysis is conclusive:

• If the algorithm prints that the network does not admit Frank states, then one has
for sure that network Ω is not a λ-homochiral network.

• If the algorithm computes a vector sΩ ∈ Rn+2+t+l+r+w+p+s
+ , then one has for sure

that sΩ encodes a Frank state, which is a saddle point.

• The algorithm can compute any Frank state satisfying the racemic condition

i1 = i2 = x1 = · · · = xn = 1.

The above algorithm was implemented as a computer program written in Python. It
is available at https://gitlab.com/homochirality/listanalchem.

8 Computational analysis of chiral networks: Exper-

imental results.

We want to test our tools. To this end, we analyze four chiral networks. Before of this we
have to note that, except for the enantiomeric species, all the reagents are in a constant
concentration and the final products do not have any effects on the reactions. Then, the
species other than the enantiomers are included only as ilustrative information. The later
assumption implies that some reactions are redundant, as it will be mentioned in each
particular model.

We begin with the Kondepudi-Nelson Network [11], which is given by the abstract
reactions:



R1: Synthesis: A + B k0−−→ l-X
A + B k1−−→ d-X

R2: fo-Decomposition: l-X k2−−→ A + B
d-X k3−−→ A + B

R3: Autocatalytic: A + B + l-X k4−−→ 2 l-X
A + B + d-X k5−−→ 2 d-X

R4: so-Decomposition: 2 l-X k6−−→ A + B + l-X
2 d-X k7−−→ A + B + d-X

R5: no-Enantioselective: ∅
R6: Inhibition: l-X + d-X k8−−→ P

Notice that in this network we have a single inhibition reaction that is self-dual. The
stoichiometric coefficient of this reaction is equal to -1. Moreover, we have that the set
R3 is not empty. We can conclude that the network is λ-homochiral. We can use our
algorithm to compute Frank states. Thus, we look for suitable values of k0, ..., k8. To
begin with, we notice that because of the symmetry constraint related to dual reactions
the equalities k0 = k1, k2 = k3, k4 = k5 and k6 = k7 hold. Then, we focus on computing
suitable values for k0, k2, k4, k6 and k8, to this end we use our algorithm and computer
program. We get the next conditions:

k2 = k3 ∈ (0,∞)

k4 = k5 ∈ (k2,∞)

k6 = k7 ∈
(
0,−k2

2
+

k4
2

)
k8 ∈

(
Max(−k2 + k4 − k6,−

k2
2

+
k4
2

− k6),∞
)

k0 = k1 = k2 − k4 + k6 + k8

We can use the above data to sample the set of Frank states. We have for instance
that (

k2 = 1, k4 = 2, k6 =
1

4
, k8 = 1, k0 =

1

4

)
is a Frank state. We simulate the dynamics of the network in the vicinity of this state using
a computer program based on the DLSODE algorithm [15], and developed in this work for
that purpose. The program is available at https://gitlab.com/homochirality/chemulator.
The experimental results are consigned in figure 1.

It is interesting to remark that the dynamics triggered by perturbations of Frank states
give place to homochiral states, while the dynamics triggered by steady states that are
non-Frank give place to racemic concentrations, see Figure 1 B-) and C-).
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Figure 1. Simulations of the KN Model under the conditions found for instability
in this work. A-) Time series for the ki values proposed in the example,
see text, B-) Bifurcation diagrams as a function of the autocatalytic rate
constants, and C-) Bifurcation diagrams as a function of the synthesis
rate constants. The simulations are presented without (left) and with a
perturbation of 1× 10−7 (right), in the initial concentrations of the iso-
mers which were equal to 1 in all cases. Some unperturbed experiments
behave like if they were perturbed, it happens because of the numerical
error intrinsic to the computation, as it can be seen in B-) and C-), left
side.

Now, let us study three further networks that are related to the KN Network. Those
networks were proposed to study the emergence of homochirality, and they are modifica-
tions of the KN model adapted to the Strecker synthesis [12]. The species names involved
in the models are the molecules needed in the aforementioned synthesis. These molecules
are:

Ammonia: NH3

Hydrogen cyanide: HCN
Imine: R−CH−−NH abbreviated as INH
α-aminonitrile: H2NCH(R)CN abbreviated as l-CN

and d-CN
α-amino acid: H2NCH(R)COOH abbreviated as l-AA

and d-AA
Achiral dimer: ADCN

We call this first model the Kondepudi-Nelson-Strecker-Amino-acid-Production (KNS-
AP) Network, and it is represented in the following way



R1: Synthesis: INH + HCN k0−−→ l-CN
INH + HCN k1−−→ d-CN

R2: fo-Decomposition: L−CN k2−−→ INH + HCN
d-CN k3−−→ INH + HCN
l-CN + 2 H2O

k8−−→ l-AA + NH3

d-CN + 2 H2O
k9−−→ d-AA + NH3

R3: Autocatalytic: l-CN + INH + HCN k4−−→ 2 l-CN
d-CN + INH + HCN k5−−→ 2 d-CN

R4: so-Decomposition: 2 l-CN k6−−→ l-CN + INH + HCN
2 d-CN k7−−→ d-CN + INH + HCN

R5: no-Enantioselective: ∅
R6: Inhibition: ∅

Observe that this model does not contain inhibition reactions. This implies that, according
to our results, the network is not λ-homochiral. Also, note that in the subset of fo-
decomposition reactions, only two of the four reactions are necessary because we have
two pairs of equivalent reactions. In other words, the KNS-AP model can be represented
as:

R1: Synthesis: k0−−→ l-CN
k1−−→ d-CN

R2: fo-Decomposition: l-CN k2−−→
d-CN k3−−→

R3: Autocatalytic: l-CN k4−−→ 2 l-CN
d-CN k5−−→ 2 d-CN

R4: so-Decomposition: 2 l-CN k6−−→ l-CN
2 d-CN k7−−→ d-CN

R5: no-Enantioselective: ∅
R6: Inhibition: ∅

Simulations of the above mechanism show that all the dynamics triggered by perturba-
tions of steady states evolve toward racemic concentrations, even if the initial conditions
are not racemic, see Figure 2.

The second model is the Kondepudi-Nelson-Strecker-Amino-acid-Production-Limited-
Enantio-Selectivity (KNS-AP-LES), represented by
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Figure 2. Simulations for the KNS-AP model. A-) Time series, B-) Bifurcation
diagram for the autocatalytic rate constants, and C-) Bifurcation dia-
gram for the synthesis rate constants. The initial concentrations of the
isomers were 1 for the left side plots (without perturbation), and 0 and
2 for the right side (with perturbation).

R1: Synthesis: INH + HCN k0−−→ l-CN
INH + HCN k1−−→ d-CN

R2: fo-Decomposition: l-CN k2−−→ INH + HCN
d-CN k3−−→ INH + HCN
l-CN + 2 H2O

k12−−→ l-AA + NH3

d-CN + 2 H2O
k13−−→ d-AA + NH3

R3: Autocatalytic: l-CN + INH + HCN k4−−→ 2 l-CN
d-CN + INH + HCN k5−−→ 2 d-CN

R4: so-Decomposition: 2 l-CN k6−−→ l-CN + INH + HCN
2 d-CN k7−−→ d-CN + INH + HCN

R5: no-Enantioselective: l-CN + INH + HCN k8−−→ l-CN + d-CN
d-CN + INH + HCN k9−−→ d-CN + l-CN

R6: Inhibition: l-CN + d-CN k10−−→ l-CN + INH + HCN
d-CN + l-CN k11−−→ d-CN + INH + HCN

This model is almost equal to the previous one, except that we added the two no-
enantioselective reactions l-CN + INH + HCN k8−−→ l-CN + d-CN and d-CN + INH +
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Figure 3. Simulations of the KNS-AP-LES model. A-) Time series, B-) Bifurca-
tion diagram as the autocatalytic rate constants are changed, and C-)
Bifurcation diagramas as a function of the synthesis rate constants. The
initial concentrations of the isomers were equal to 1. Left side without
perturbation, and right side with a perturbation of 1 × 10−7 in one of
the isomers. Some unperturbed experiments behave like if they were
perturbed because of numerical error intrinsic to the computation as it
can be seen in B-), left side.

HCN k9−−→ d-CN + l-CN [14], as well as their reverses which are inhibition reactions.
With this modifications, the new model is able to produce λ-homochiral states. Using
our algorithm we get the following data:

k2 = k3 ∈ (0,∞)

k4 = k5 ∈ (k2,∞)

k6 = k7 ∈
(
0,−k2

2
+

k4
2

)
k8 = k9 ∈ (0,−k2 + k4 − 2k6)

k10 = k11 ∈ (Max(0,−k2 + k4 − k6 + k8,−k2/2 + k4/2− k6 + k8/2),∞)

k0 = k1 = k10 + k2 − k4 + k6 − k8

We have that the following set of rate constants k0 = k1 = 0.2, k2 = k3 = 1, k4 = k5 =

2.8, k6 = k7 = 0.25, k8 = k9 = 0.25, and k10 = k11 = 2 give place to a Frank state. Figure
3 shows the results of our simulations using those values.



The third model is the Kondepudi-Nelson-Strecker-Limited-Enantio-Selectivity (KNS-
LES) model given below.

R1: Synthesis: INH + HCN k0−−→ l-CN
INH + HCN k1−−→ d-CN

R2: fo-Decomposition: l-CN k2−−→ INH + HCN
d-CN k3−−→ INH + HCN

R3: Autocatalytic: l-CN + INH + HCN k4−−→ 2 l-CN
d-CN + INH + HCN k5−−→ 2 d-CN

R4: so-Decomposition: 2 l-CN k6−−→ l-CN + INH + HCN
2 d-CN k7−−→ d −CN+INH + HCN

R5: no-Enantioselective: l-CN + INH + HCN k8−−→ l-CN + d-CN
d-CN + INH + HCN k9−−→ d-CN + l-CN

R6: Inhibition: l-CN + d-CN k10−−→ l-CN + INH + HCN
d-CN + l-CN k11−−→ d-CN + INH + HCN
l-CN + d-CN k12−−→ ADCN

We observe that this network is autocatalytic, and that it contains inhibition reactions
whose stoichiometric coefficients are negative. According to our results, this network must
be λ-homochiral. We use our algorithm to find a suitable definition of the set of Frank
states. We get the following conditions:

k2 = k3 ∈ (0,∞)

k4 = k5 ∈ (k2,∞)

k6 = k7 ∈
(
0,−k2

2
+

k4
2

)
k8 = k9 ∈ (0,−k2 + k4 − 2k6)

k10 = k11 ∈ (0,∞)

k12 ∈ (Max(−k10 − k2 + k4 − k6 + k8,−k10 − k2/2 + k4/2− k6 + k8/2),∞)

k0 = k1 = k10 + k12 + k2 − k4 + k6 − k8

We can use the above data to sample the set of Frank states. We have for instance
that the equalities k0 = k1 = 1, k2 = k3 = 1, k4 = k5 = 5, k6 = k7 = 1, k8 = k9 = 1,

k10 = k11 = 2 and k12 = 3 determine a Frank state. We simulate the dynamics that occur
in the vicinity of the later state. We have, once again, that perturbations of Frank states
give place to homochiral dynamics, while perturbations of non-Frank states give place to
dynamics that evolve towards racemic concentrations, see Figure 4.
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Figure 4. Simulations of the KNS-LES model. A-) Time series, B-) Bifurcation
diagram as the autocatalytic rate constants are changed, and C-) Bi-
furcation diagramas as a function of the synthesis rate constants. The
initial concentrations of the isomers were equal to 1. Left side without
perturbation, and right side with a perturbation of 1 × 10−7 in one of
the isomers. Some unperturbed experiments behave like they were per-
turbed because of numerical error intrinsic to the computation as it can
be seen in B-), left side.

The reported experiments seem to indicate that the tools developed in this work
are appropriate for the analysis of chiral networks: Networks that are classified as non-
homochiral cannot give place to homochiral dynamics, while Frank states of homochiral
networks give place to homochiral dynamics.

9 Concluding remarks: On the probability of being

homochiral

We have found a mathematical condition that seems to be related to the homochirality
observed in a particular set of chemical networks (chemical mechanisms or models). It is
easy to fulfill the aforementioned condition which seems to be related to homochirality:
It is enough to count with autocatalytic and inhibition reactions. Moreover, if Ω is an
autocatalytic and inhibition network, the probability of being a Frank state of Ω becomes



non-negligible. The later probability can be defined as the quotient

V ol (FΩ)

V ol (SΩ)
.

Here, we use the symbol FΩ to denote the set of Frank states whose ℓ1-norm is equal to
1, and we use the symbol SΩ to denote the set of steady states whose ℓ1-norm is equal to
1. The volumes of FΩ and SΩ can be effectively computed using polyhedral computation,
and it can be said in advance that all those quotients (probabilities) are non-negligible.
Thus, chiral networks are likely to be λ-homochiral (the conditions are not demanding),
and steady states of chiral networks are likely to be Frank states. We argue that from a
mathematical point of view homochirality is a likely phenomenon.
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Supplementary material. The following files are available free of charge.

• listanalchem.zip: An algorithm for the analysis of the capability of a chemical net-
work (chemical mechanism) to produce homochirality.

• chemulator.zip: A friendly software that can be used to simulate the dynamics of
chemical networks and which is based on the DLSODE code. This algorithm can
be used to test the homochirality conditions found with the previous software, and
it includes the possibility of obtaining bifurcation plots.
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