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“The truth is that everyone is bored, and devotes himself to cultivating habits.”

Albert Camus, The Plague

“Perhaps I’m old and tired, but I think that the chances of finding out what’s actually going on are so absurdly remote that the only
thing to do is to say, ‘Hang the sense of it,’ and keep yourself busy.”

Douglas Adams, The Hitchhiker’s Guide to the Galaxy
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A mi mamá y a mi abuelita
¡Gracias por todo lo que han hecho por mí!
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Resumen
Los tensores, una extensión de los arrays, se usan de manera extensiva en una gran variedad de proble-

mas en programación. Los tensores son los bloques básicos de construcción de múltiples frameworks de
Aprendizaje de Máquina y son fundamentales en la definición de modelos de Aprendizaje Profundo. Los
linters son herramientas indispensables para los programadores de hoy en día, ya que estos ayudan a los
desarrolladores a revisar el código antes de ejecutarlo. Aunque los tensores son muy populares no existen
tensores que revisen código con operaciones tensoriales. Dada la gran cantidad de trabajo hecho en Python
con (y sin) tensores, es sorprendente el poco trabajo que se ha hecho en esta área. La Interpretación Abstracta
es una metodología/framework diseñada para analizar código de forma estática. La idea de Interpretación
Abstracta es sobreaproximar de manera ”sound” el resultado de ejecutar una pieza de código sobre todos
las posibles entradas del programa. Una sobreaproximación ”sound” asegura que el Interprete Abstracto
nunca omitirá un verdadero negativo, es decir, si una pieza de código no es señalada como incorrecta por
el Interprete Abstracto entonces se puede asumir con seguridad que el código nunca fallará. El Interprete
Abstracto puede ser modificado para que sólo informe acerca de verdaderos positivos, aunque se pierda la
propiedad de ”soundness”, es decir, el interprete sólo informa acerca de las partes de código que fallarán
sin importar que suceda.

En este trabajo, formalizamos un subconjunto de Python con énfasis en operaciones con tensores.
Nuestra formalización de la semántica de Python está basada en la Referencia oficial del Lenguage Python.
Definimos un Interprete Abstracto y presentamos su implementación. Mostramos como cada parte del
Interprete Abstracto fué definido: su Dominio Abstracto y semántica abstracta.

Presentamos la estructura de Pytropos, la implementación del Interprete Abstracto. Pytropos es capaz
de revisar las operaciones de arreglos de NumPy teniendo en cuenta broadcasting y algunas funciones
complejas de NumPy como array y dot. Construimos 74 casos de prueba unitaros, los cuales chequean
la capacidad de Pytropos, además de 20 casos de prueba de propiedades, los cuales chequean que las
reglas semánticas de Pytropos correspondan con la forma en la que Python es ejecutado. Mostramos las
capacidades del Interprete Abstracto por medio de ejemplos de los test unitarios.
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Abstract
Tensors, an extension of arrays, are widely used in a variety of programming tasks. Tensors are the building
blocks of manymodernmachine learning frameworks and are fundamental in the definition of deep learning
models. Linters are indispensable tools for today’s developers, as they help the developers to check code
before executing it. Despite the popularity of tensors, linters for Python that check and flag code with tensors
are nonexistent. Given the tremendous amount of work done in Pythonwith (andwithout) tensors, it is quite
baffling that little work has been done in this regard. Abstract Interpretation is a methodology/framework
for statically analysing code. The idea of Abstract Interpretation is to soundly overapproximate the result of
running a piece of code over all possible inputs of the program. A sound overapproximation ensures that
the Abstract Interpreter will never omit a true negative, i.e. if a piece of code is not flagged by the Abstract
Interpreter, then it can be safely assumed that the code will not fail. The Abstract Interpreter can be modified
so that it only outputs true positives, although losing soundness, i.e. the interpreter can flag which parts of
the code are going to fail no matter how the code is run.

In this work, we specify a subset of Python with emphasis on tensor operations. Our operational Python
semantics is based on The Python Language Reference. We define an Abstract Interpreter and present its
implementation. We show how each part of the Abstract Interpreter was built: the Abstract Domains defined
and the abstract semantics.

We present the structure of Pytropos, the Abstract Interpreter implemented. Pytropos is able to check
NumPy array operations taking into account broadcasting and complex NumPy functions as array and dot.
We constructed 74 unit test cases checking the capabilities of Pytropos and 20 property test cases checking
compliance with the official Python implementation. We show what and how many bugs the Abstract
Interpreter was able to find.
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Prelude

Dear reader, thank you for picking this thesis to read. Reading a thesis is often an annoying task, and it is
also a very difficult task to do as well. Despite what my advisors tell me, I like to write in a style slightly
different from the style seen often in science publications. I ask you, dear reader, to tolerate my style of
writing, I try to write the text as if I were explaining all the stuff to my past-self (specifically, to my own
one-and-a-half-years past self). You will find many overexplanatory sentences, paragraphs and complete
subchapters, with examples and other uncommon customs. My intention is, after all, to be a guide for my
past-self to come where I have arrived, but faster.
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Chapter 1

Introduction

1.1 Motivation

Dynamically typed programming languages (dynamically typed languages for short) like Python and Ruby
have risen in popularity over the last two decades. Their simple syntax, ease of use, out-of-the-box REPLs1,
dynamic type systems, and their great number of libraries have been the main factors to this rise. Indeed,
developers can write, execute and see results immediately in fast development cycles, especially at the initial
stages. However, their simple syntax and dynamic typing make them particularly difficult to analyse as the
more rigid the language, the easier to analyse it is. Most efforts on static analysis for Python have focused on
assuming some restrictions on the language. For example, MyPy (Lehtosalo et al., 2016) assumes the type
of variables as static.

Dynamically typed languages only check type mismatches at runtime, i.e. errors between variable types
only get detected when the code is run. For example, consider the following piece of Python code:

1 myvar = ”Some text in a string”
2 other = 4.1
3 result = ”oh my” + 2 # This will fail
4 print(result + other, myvar)

The code is syntactically correct, but it fails to execute. Python will interpret the first two lines and will
stop in the third, where it will throw an exception because strings and numbers cannot be added together in
Python.

A Static Type Analysis tool, such as MyPy (Lehtosalo et al., 2016), is able to detect type mismatches
without ever executing the code. MyPy has the ability to infer the type of variables, e.g. it detects in the
piece of code from above that other is of type float and myvar of type str .

Python dynamic nature makes it extraordinarily hard to statically analyse. In fact, due to Python
introspection capabilities, it is impossible to guarantee the behaviour of a piece of Python code without
assuming some fixed basic semantics by the interpreter. MyPy tackles the undecidability problem of Python
dynamic nature by restricting the number of valid Python programs to those that conform to a static type
system2.

1Read-eval-print loop
2I would like to express my immense gratitude to the MyPy team for writing such an amazing tool. I do not know how many

hours they saved me from endless frustration at debugging. All Python code I write now is full of typing annotations to allow
MyPy to check for any inconistency. What I like about MyPy is that it alerts me of faulty code as I write. It feels remarkably similar
to writing code in a language with a stronger static type system (e.g. Haskell).
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The inference power of MyPy is limited in several ways, one of them being it impossible to infer the type
of a function. MyPy allows developers to optionally add type annotations into the code. Type annotations
allow more restrictive and precise types, and they help MyPy to catch more potential bugs.

Although MyPy is capable of checking for type mismatches, its assumptions limit it from a whole class
of valid and correct Python code3. There are many scenarios where even with type annotations, MyPy
cannot detect a bug in the code. For example, consider the following piece of python code:

1 import numpy as np
2 x = np.array( [[1,2,3], [4,5,6]] ) # shape (2,3)
3 y = np.array( [[7], [0], [2], [1]] ) # shape (4,1)
4 z = np.dot( x, y ) # trying to apply dot product

In this example, we are using NumPy (Oliphant, 2006), which is a well known Python library, but it
could also have been TensorFlow (Abadi et al., 2016) or any other library with support for tensors and
tensor operators. Tensors are a generalisation of vectors and arrays, a homogeneous container which can
be indexed by one natural number or a list of natural numbers. As an example consider a tensor of only
one dimension, an array of size n, which contains exactly 𝑛 elements. A matrix of size 𝑛 × 𝑚, alternatively,
a tensor with shape (n, m), is a structure that holds 𝑛 ⋅ 𝑚 elements. Notice that a shape is any tuple of
natural numbers and a tensor is a structure with a shape. For example, the shape (2, 5, 6) tells us that
the tensor has 2 ⋅ 5 ⋅ 6 = 60 elements.

The example above will fail to run as it hits an erroneous condition at the last line. Two arrays/tensors
are created, x and y with shapes (2, 3) and (4, 1), respectively. Then, a matrix multiplication with both
tensors tries to be performed, but it fails because the shapes of the two matrices are incompatible (3 ≠ 4).
The call to np.dot fails, but the developer will not be warned about it and will only notice it when executing
the code. To summarise, the aforementioned piece of code type checks in MyPy even though it fails to run.

If it were possible to add the shape of the tensors as part of the type definitions, we could potentially
type check for mismatches of tensor shapes. Unfortunately, there does not seem to be a straightforward way
to add the shape of tensors to their types and check them in MyPy.

Tensors allow writing computations more concisely. Tensor operations are also highly optimisable
and can be run in parallel. With the advent of Deep Learning, tensors have become a central figure in the
developers’ toolkit. Tensor operations fail if the tensors are not of the right shape. To statically analyse if
operations between tensors are valid, the shape of tensors must be computed. To compute the shape of
tensors, we require to also compute the value of every other variable in the language. The kind of static
analysis that is focused on finding out the value of variables is called Static Value Analysis.

1.2 Problem Definition

Tensors are becoming an essential abstraction in the toolkit of developers. Tools tailored to work with or
based on tensors have been popping out in recent years. It is therefore imperative to develop analysis tools
to verify and flag potential bugs using tensors and tensor operations. A Static Value Analysis tool focused
on tensor shape analysis could aid developers in their work.

3For example, there is no way (currently) to make MyPy happy about the function
def addtwice(x, y): return x + y + y; addtwice(3,2); addtwice('a','b') . If no type annotation is given, MyPy
alerts the user on the usage of non-typed functions. But no type can satisfy the assertion because of the “polymorphisity” of the +
operation.
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All of the theoretical approaches that tackle the problem focus on type checking tensors and tensor
operations. Griffioen (2015), Slepak, Shivers, and Manolios (2014), and Rink (2018) define a type system
extended with tensors and tensor operations. The principal idea of these type systems is to encode the
restrictions that the operations on tensors require. A tensor operation is valid if the restriction checks with
the tensors.

Practical attempts to check for tensor shapes have been mainly focused on languages with strong type
systems. Chen (2017) (in Scala) and Eaton (2006) (in Haskell) have tried to annotate tensors’ types with
their shapes, leaving the compiler’s type check inference system to check the shapes. At the time Eaton
(2006) proposed his methodology to extend types with additional data, GHC (Glasgow Haskell Compiler),
the by default Haskell compiler, didn’t have all the capabilities to work with data at the type level, resulting
in some rather complicated code to read and write. A recent approach to type check tensors in Haskell has
been shown in a library written by Cruz-Camacho and Bowen (2018), which uses the updated Dependent
Type System of Haskell to code and enforce type shapes.

Abstract Interpretation is a framework for static analysis. The main idea of Abstract Interpretation is
to overapproximate the result of computing a piece of code. Any piece of code can be run in an Abstract
Interpreter, an interpreter build from the semantics defined by Abstract Interpretation, in a finite amount of
time. Towarranty that the Abstract Interpreter runs in a finite amount of time, Abstract Interpretation defines
a series of rules to follow in order to overapproximate the result of executing operations by the program.
Abstract Interpretation is especially useful for Static Value Analysis as the rules to derive the semantics of
an Abstract Interpreter from the formal semantics of the language are very well studied, formalised and
explicit (Cousot & Cousot, 1977).

Writing an Abstract Interpreter for Python requires the formal semantics of Python as a starting point.
Unfortunately, Python does not have any official formal semantics defined. Some attempts to define formal
semantics for Python have been done (Politz et al., 2013; Fromherz, Ouadjaout, & Miné, 2018; Guth, 2013;
Ranson, Hamilton, Fong, Hamilton, & Fong, 2008) but none of them takes into account type annotations,
which we hope to integrate into the Static Value Analysis.

Problem: Building an Abstract Interpreter for Python to Statically Value-Analyse tensor operations.

Assumptions and Scope

In this section, we will explore some of the assumptions and scope of the Abstract Interpreter to be build in
the rest of the document.

Very little can be asserted from a piece of code in a programming language like Python without making
any assumptions about the environment. For example, consider the following piece of code:

1 # runme.py
2 a = int('6') + 2
3 print(7)
4 assert a == 8, ”int('6') + 2 != 8. Wut?”

One may be tempted to say that the code above never fails, but one would be mistaken. It will never fail
to run if we assume that the program starts from a blank state, i.e. no variables have been defined before
its execution. In fact, the functions int and print can be redefined to compute anything we want. Also,
thanks to the introspection capabilities of Python, the code above could do just about anything, and that
is without considering that the piece of code could be evaluated by an exec or an eval statement. For
example, consider the following piece of code that calls runme.py:
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1 runme = open('runme.py').read()
2 fakerun = ”””
3 def int(val):
4 return 3.0
5 def print(val):
6 global a
7 a = val
8 ””” + runme
9 exec(fakerun)

From now on, we will assume that any piece of code written in Python will be called from the interpreter
directly without changing the behaviour of any built-in function or variable (this includes the behaviour of
variables and functions from non-built-in libraries like NumPy), i.e. we assume that the code will be run
from a blank state with no global variables (re)defined.

As a developer, I can say that I like when I see a piece of code flagged wrong and IT IS WRONG and not
a false alarm, a false positive. It is very annoying to have a tool flag every sentence you write as wrong even
though the code works just fine. We will assume from here onward that we want the Tensor Analysis to flag
only errors that are going to happen if the code is run, i.e. we want only true positives not false positives.

Although TensorFlow (Abadi et al., 2016), PyTorch (Paszke, Gross, Chintala, & Chanan, 2017) and other
libraries would benefit from the development of a tool targeted to check them, we chose to focus on checking
tensor operations from the library NumPy. NumPy is the standard library for computing with tensors and it
is used as back-end on most tensor projects.

Implementing an Abstract Interpreter, or any Static Analysis, for a language like Python is a considerable
undertaking, mainly because of the breadth of characteristics a mature Programming Language like Python
has. Thus, we will centre just on a couple of Python core characteristics and will leave others for future work.
The characteristics explored in this current document are:

• Built-in primitive variables: int , float , bool , None , list , tuple .
• Primitive functions: int , print , input , …
• Boolean and numeric operations: + , - , * , / , \% , ** , « , » , // , < , <= , > and >= .
• if and while statements.
• Import statement (limited only to the numpy library).
• NumPy arrays and some of its methods/functions to work with NumPy arrays (including dot ,

zeros , shape , and numeric operations with broadcasting).

Consider the following piece of code:

1 if someval:
2 i = 3
3 else:
4 i = ”ntr”
5 print(i)

The variable i can either be an int or a str , thus the type of i should be Union[int,str] .
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Gradual Typing restricts the number of valid programs to those that type check. A variable in Gradual
Typing is of a specific type and it never changes, i.e. if the type of a variable is set to be int then it can only
contain int s. Union types are meant to indicate that a variable may take more than one value at any point
in time.

Building an Abstract Interpreter aware of Union types is not considered part of this work because if of
the added complexity it would require. Therefore if a variable holds more than one value, e.g. it is either
a 5 or 2.3 , then the type of the variable will be considered to be Any , not Union . Any and Union

types are defined in the typing library (Guido van Rossum, Jukka Lehtosalo, & Łukasz Langa, 2014), an
implementation of Gradual Typing4.

It may seem like an Abstract Interpreter where variables can only carry one value at the time would
make the analysis weaker than Gradual Typing, but it does not make it necessarily. Consider the following
piece of code:

1 i = 3
2 i = ”ntr”
3 i += ”ueor”
4 print(i) # the type of `i` is `str`

Under Gradual Typing, the type of i is Union[int,str] , but we know that the variable i holds
only one type at all times, i.e. i never holds two or more values as in the previous example. The Abstract
Interpreter would run each line sequentially, and it would never find a state where the value of i is both
int and str at the same time, i.e. the variable is never considered to be of type Any but it will have
type int and then type str as the code is run. In this regard, an Abstract Interpreter can give a better
approximation of what the types of a variable are at any point in time, while Gradual Typing considers all
possible types a variable may have at any point in time.

To recapitulate, the assumptions and scope of the abstract interpreter are:

• The behaviour of built-ins, imported variables and functions is always the same, and it is determined
by the Python reference manual or the library’s author, e.g. input is a function that returns a str .

• The user will only be reported of errors that will happen but no errors that may happen (This means
that the resulting tool is not a verification tool).

• The Static Value Analysis should focus on checking operations from the NumPy library.
• Only a selected subset of Python characteristics and functions are explored.
• A variable can hold only one type of value at the time. If a variable is set to hold values of different

types at the same time, then its value will be Any .

1.3 Objectives

1.3.1 General objective

To design and implement a strategy for statically analyse tensor shapes in Python to support early detection
of potential bugs before execution.

4Gradual Typing is one kind of Static Type Analysis targeted to Dynamically Typed Languages like Python
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1.3.2 Specific objectives

1. To design and implement an abstract interpreter for Python.
2. To design and implement a strategy that uses the abstract interpreter to analyse the shapes of tensors

for Python code.
3. To implement a tool that flags the bugs inferred by the abstract interpreter.
4. To empirically evaluate the developed static analysis in a set of representative test cases.

1.4 Contributions

The contributions of this work are the following:

• An specification of operational semantics for a subset of Python using a methodology similar to
Fromherz et al. (2018). This specification includes a subset of the Python syntax, anAST representation
of the syntax more malleable to work with, and the semantics of the subset of the Python Language.

• Definition of an Abstract Domain for variables in Python.
• Definition of an aliasing-aware Abstract Domain for the state of a Python program.
• Derivation of an operational semantics from the Abstract Domain, i.e. an Abstract Interpreter for

Python.
• A working, open source implementation of the Abstract Interpreter nicknamed Pytropos5 with a

plugin for (Neo)Vim to work as a linter.

1.5 Thesis Structure

The remaining parts of this document are organised as follows:

• Chapter 2 explores some background material on Dynamically typed and Statically typed languages,
Tensors (and why are they important), the NumPy library, and Abstract Interpretation;

• Chapter 4 presents some of the gory details of the implementation of the Abstract Interpreter;
• Chapter 5 focuses on the tests made to ensure that the implementation follows the Abstract Interpreter

nicknamed Pytropos, with the goal of showcasing the abilities of Pytropos to detect errors using
NumPy arrays and to point some of the areas of improvement of the tool;

• Chapter 6 presents some related work on Abstract Interpretation for Python, Static Analysis of Tensor
shapes and related libraries, Static Analysis tools; and finally,

• Chapter 7 sums up the work done and future directions.
• Additionally, an Appendix A to explain in detail the parts of the abstract interpreter. The appendix is

divided into three parts: the definition of the syntax and semantics of a subset of Python, the definition
of an Abstract Interpreter for Python, and some other ways in which Statically Analyse the shape of
tensors for Python.

5The source code for the interpreter can be found at https://github.com/helq/pytropos

https://github.com/helq/pytropos
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Chapter 2

Background

In this chapter, we explore a couple of motivational topics and ideas necessary for the development of the
Static Value Analysis presented in Chapter 3.

2.1 Dynamic and Static Analysis

Static Analysis and Dynamic Analysis are two disciplines whose ideal is to ensure some property holds on a
piece of code. Static Analysis checks the code without the need to run it, while Dynamic Analysis checks the
code as it is executed.

Static Analysis is often associated with compiled Programming Languages. Compiled Programming
Languages require to know how to precisely translate the operations of the language into machine instruc-
tions. Compiled Programming Languages make use of a variety of Static Analyses to find out suitable
machine instructions for a piece of code.

Interpreted Programming Languages, on the other hand, find out which machine instructions to use
for a given operation as they encounter the operations, thus they make heavy use of Dynamic Analyses.
Notice that the distinction between Compiled Programming Languages and Interpreted Programming
Languages does not stem from their use of Static and Dynamic Analyses but how they process the input
files. Compiled Programming Languages read the totality of the input files and translate the operations into
machine instructions, while Interpreted Programming Languages do not need to read the whole file before
starting to execute the instructions in them.

Static and Dynamic Typing are two categories of the same kind of Analysis, Type Analysis (Pierce &
Benjamin, 2002). Type Analysis tells compilers and interpreters the type of a variable. Both Static and
Dynamic Typing based Programming Languages have strong and weak points: Compiled Languages hold
stronger warranties for the resulting binary as they restrict the set of valid programs to those that “type
check”, while Interpreted Languages allow the programmer to forgo the usually expensive step of compiling
code.

Dynamically Typed Interpreted Programming Languages (Dynamically Typed Languages) are excellent
tools for prototyping as they let the developer test their code without waiting for it to compile. However,
writing big pieces of software in a Dynamically Typed Language is often a challenging task as the type
warranties that they hold are not as strong as in compiled programming languages.

Developers are more prone to make a mistake that will only appear once the code is executed in a
Dynamically Typed Language opposed to Statically Typed (Compiled) Language. Dynamic Typing is not
ideal for code that needs to warranty a high degree of reliability. Reliability defined as the certainty that the
code will never fail due to type mismatches.

Traditional Static Typing can be applied to Dynamically Typed Languages to acquire the same level of
confidence of Statically Typed Languages. Unfortunately, the restrictions Static Typing induces in the code
often make them too much of a hassle for developers of Dynamically Typed Languages.
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Several proposals to make Dynamic Type Systems more robust have appeared in recent years. Some
notable proposals and implementations include:

• Gradual types for Python, Mypy (Lehtosalo et al., 2016),
• Gradual types for Javascript, Typescript (Bierman, Abadi, & Torgersen, 2014; Hejlsberg, 2012) and

Flow (Chaudhuri, 2016),
• Gradual types for Ruby, using the library rubydust (An, Chaudhuri, Foster, & Hicks, 2011), and
• Refinement types for Ruby (Kazerounian, Vazou, Bourgerie, Foster, & Torlak, 2017).

Gradual Typing (Siek & Taha, 2006) was proposed as a way to bridge the gap between Static and
Dynamic Typing. The main idea of Gradual Typing is to enforce Static Typing only to those parts of the code
that the developer cares about.

Gradual Typing adds a new type value to the Type System, ? (named Any). In Gradual Typing all
variables are of type ? unless the user annotates them with a more precise type like int or float . Type
annotations are optional in Gradual Typing, as opposed to Static Typing where the type of all variables
must be known (either by annotations or inference). Strictly speaking, Gradual Typing is a Static Typing
Algorithm that simulates Dynamic Typing by extending the typing rules with the type ?. Operating with
? means that we have no idea of the type of the variable we are working with, exactly what happens on
Dynamic Typing.

Refinement Types (Rushby, Owre, & Shankar, 1998) are mainly used for verification. The idea of
Refinement Types is to make sure a piece of code follows a formal specification. Formal specifications are
written in logic and are translated, usually, into propositional formulae to be checked by SAT or SMT Solvers.

2.2 Python Type Annotations

Since Python 3.5 (Guido van Rossum et al., 2014), the inputs and output of a function can be annotated with
types. Since Python 3.6 (Ryan Gonzalez, Philip House, Ivan Levkivskyi, Lisa Roach, & Guido van Rossum,
2016) variables can be type annotated too. Type annotations do no modify the type of the variable they are
attached to. Their purpose is only to provide a way to annotate the type the user believes the variable has.
Type annotations are used by external libraries as MyPy (Lehtosalo et al., 2016) and Enforce 1 to check for
correctness of the code. The Python typing library offers a built-in arrange of variables to type annotate
variables. For an in-depth explanation on the goal of Type Annotations and how are they used in Python
refer to Guido van Rossum and Ivan Levkivskyi (2014).

2.3 Machine Learning and Python

Machine Learning has been on the rise for the last couple of years since Deep Learning (DL) exploded
in popularity. DL has been able to outperform the state of the art in many areas in computer science. DL
research consists of finding new models that perform a certain task as well as possible (sometimes even
better than humans).

A trained DL model represents the work of many hundreds of hours (often thousand or more) of
computing and coding time. Hundreds of DL models have been released to the public by research institutes,
the academia, and the industry alike. Given the high amount of competition, it is fundamental for DL
practitioners to be able to test many DL models as fast as possible. Trying to find a better model before than
others is a fierce fight that drains many hours of laborious thinking, coding and debugging.

1GitHub project accessible on https://github.com/RussBaz/enforce

https://github.com/RussBaz/enforce
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Nowadays, most papers on Machine Learning (ML) and Deep Learning (DL) use Python to define
their models. In fact, most DL libraries have an interface to Python. Some of the many Python libraries at
disposition for programmers are TensorFlow (Abadi et al., 2016), PyTorch (Paszke et al., 2017), (the now
defunct) Theano (Bergstra et al., 2011), and pycaffe (Jia et al., 2014, as part of the Caffe framework).

Python has become just the right tool for prototyping models, and therefore, Python (and other Dynamic
Typed Languages like Lua) has become the primordial playground for DL enthusiasts in the last couple of
years.

2.4 Tensors

Array computation is a convenient abstraction to write code that requires the manipulation of blocks of
variables. The NumPy library presents an example of what can be done with it. Notice how the two pieces
of code below perform the same operation (“normalization” of the values in the matrix) but NumPy does it
in just fewer lines:

1 import numpy as np
2 A = np.array([
3 [1., 2., 4.],
4 [6., 3., 2.],
5 [6., 9., 5.],
6 ])
7
8 A /= np.max(A)

1 A = [
2 [1., 2., 4.],
3 [6., 3., 2.],
4 [6., 9., 5.],
5 ]
6
7 m = max(map(max, A))
8 for i in range(3):
9 for j in range(3):

10 A[i][j] /= m

Multidimensional arrays, arrays which are indexed not by one but by 𝑛 integers, are often called tensors.
We take in this work the same approach of calling all–arrays, matrices and tensors–the same way, tensors.
If a tensor has one dimension it is equivalent to an array, and if it has two dimensions it is equivalent to a
matrix.

Operating with tensors is often syntactically simpler than using looping structures to operate with blocks
of memory, i.e. writing a+b , where a and b are tensors is simpler than:

[a[i]+b[i] for i in range(len(a))] .
Besides, a+b even works for tensors with different (but compatible) shapes.

2.5 NumPy: Library for tensor computation

The primary purpose of this work is to build a Static Value Analysis to check for tensors and tensor operations.
NumPy (Oliphant, 2006) is a very widely used library to operate with tensors and arrays, in fact, many
other libraries are built on top of NumPy.

NumPy tensors are called arrays. An array can be created out of almost anything, almost any type of
value can be interpreted into an array by NumPy2. For example, all of the following variables hold a valid
NumPy array:

2Notice that this represents a challenge for Static Type Analysis as it requires the type of a variable to depend on the contents of
the variable. Fortunately calculating the contents of a variable is what Abstract Interpretation does. An Abstract Interpreter allows
us to implement/replicate the whole semantics of a library in a similar way at how it is defined in the original library.
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1 a = np.array(”some text”) # array of chars (8-bit numbers)
2 b = np.array([[1, 2], [2, 4]]) # array of ints of shape (2, 2)
3 c = np.array([[1, 2], [2]]) # array of objects of shape (2,)
4 d = np.array([(1, 2), [2, 5]]) # array of ints of shape (2, 2)
5 e = np.array([[1, 2], {2, 5}]) # array of objects of shape (2,)

The shape of a NumPy array can be changed without changing its contents:

1 a = np.arange(50)
2 a = a.reshape((1,-1,2,5))

Reshaping preserves the number of elements in an array. If a -1 is found, it will be taken as a wild card
and the missing dimension will be calculated to keep the original shape.

NumPy has this little, nice trick to handle operations that would require reshaping or copying an array
when operating with two arrays with different, but similar, shapes. The trick is called broadcasting, and can
be better understood with an example:

1 a = np.zeros((10, 3, 4)) + 2
2 b = np.arange(3).reshape((3, 1))
3 c = a * b

Notice that the code is valid and evaluates in Python. The shape of a is (10, 3, 4) because adding
an array of any shape to an int gives us back an array with the same shape, i.e. we have added a scalar to
every element of a tensor. b has a shape of (3, 1) and the shape of c is (10, 3, 4) . Broadcasting
“generalises” the rule of operating with a scalar (as it is done in the first line). The rule works by extending
with 1 ’s the left side of the smaller shape until both are equal, and then checking if the dimensions of both
shapes are compatible. Two dimensions are compatible if they are the same or one of them is 1 . For a deeper
explanation on broadcasting take a look at https://docs.scipy.org/doc/numpy/user/basics.broadcasting.
html.

2.6 Abstract Interpretation

In this section, a rather informal description of Abstract Interpretation is given. For an in-depth explanation
of Abstract Interpretation refer to (Nielson, Nielson, & Hankin, 2005, Chapters 1 and 4; Cousot & Cousot,
1977; Nipkow & Klein, 2014).

2.6.1 Informal Introduction

Static Analysis includes a broad assortment of techniques with the purpose of verifying some property in the
code. It may be trying to prove some invariant in the code like there is never a segmentation fault, the code
does what it says it does even when ran in concurrently, or the codes terminates (given some restrictions
(Urban, 2015)).

Abstract Interpretation was conceived (Cousot & Cousot, 1977) as a way to approximate the result of all
possible executions of a computation. Specifically, Abstract Interpretation computes an overapproximation

https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
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of some property of a program. To explain what an overapproximation is, consider the following piece of
code:

1 a = int(input())
2 a = abs(a)
3 b = 2 * a

Assuming the user inputs a valid number and the code runs as intended, we know at the end of the
computation that: a holds a non-negative integer, and b holds a non-negative integer multiple of 2. An
overapproximation of this computation is saying that a and b are both non-negative integers (notice that
we do not say that b is even).

There is an inherent trade-off between the precision of an overapproximation, and the amount of storage
and processing the overapproximation requires. The most precise method is to store in a set all the possible
values a computation may take but it is often impossible to do. The example above asks us to store an infinite
set of numbers, which is impossible.

What is very interesting about Abstract Interpretation is that it is based on solid theory. If one applies it
correctly, a Static Analysis based on Abstract Interpretation is warrantied to be sound, i.e. it can warranty
there will never be a miss or false negatives. Although given the nature of overapproximating, the Static
Analysis may produce a load of false positives. The amount of false positives depends on the specific
overapproximation used.

How is the overapproximation calculated and which tools do we have at our disposal to compute it?
The following subsections present briefly the important concepts behind Abstract Interpretation. For an
in-depth explanation of Abstract Interpretation refer to Nielson et al. (2005, Chapters 1 and 4), Cousot and
Cousot (1977), Nipkow and Klein (2014).

2.6.2 Ingredients for an Abstract Interpreter

Before we start we need some groundwork. First of all, as always in Programming Languages, we need a
language to analyse together with its formal semantics. We also need a property we want to analyse.

For this work, the property to analyse will be the value of variables throughout the execution of the
program. i.e. Value Analysis. Abstract Interpretation can be used to analyse any other property of programs,
some examples include memory consumption, functional properties, thread safety, computation traces, and
termination.

Before we can analyse a piece of code, we require to know the language to analyse. For Value Analysis
we require the following description of the language:

• The syntax of the language (how to write things),
• The values the language handles (for example, integers, booleans and floats),
• The state of a program (how to group the values and their names), and
• The concrete semantics of the language (the rules that tell us how to evaluate the code)

Given these we can define:

• An Abstract Domain for the values in the language (the overapproximation used to represent values),
• An Abstract Domain for the state of the program (overapproximates the state of the program), and
• The abstract semantics induced from the Abstract Domain and the concrete semantics.



14 Chapter 2. Background

2.6.3 Value Abstract Domain

Our goal with Abstract Interpretation is to overapproximate the result of running a program on all possible
inputs. Remember that a variable holds a single value at the time, so a naïve approach to run over all possible
inputs is to extend what a variable can hold.

Suppose a variable can hold a set of values, not a single value, and we extend the semantics of a language
to operate over all combinations of values any time an operation is made between two variables. If we do
this, we will be able to calculate all possible states a program may arrive. For example, consider:

1 cond1 = bool(input()) # Stdin input
2 cond2 = bool(input())
3
4 if cond1:
5 a = 0
6 b = 20
7 elif cond2:
8 a = 2
9 b = 6

10 else:
11 a = 1
12 b = 9

After running the code, we know that a ∈ {0, 1, 2} and b ∈ {6, 9, 20}. Now, if we want to compute
a+b we must compute all possible results of computing with the values from a and b , which results
in a+b ∈ {6, 9, 20, 7, 10, 21, 8, 11, 22}. Notice how the result of calculating a+b overapproximates the
real values a+b can take, i.e. a and b are assumed to be independent of each other so we get way more
possible values for a+b than can actually be computed.

It is clear that computing with sets of values is expensive, even impossible at times, e.g. the set {𝑎 ∈
ℕ|𝑎 ≤ 0} cannot be stored in memory.

What we can do to not compute all possible computations is to use an abstraction that lets us overap-
proximate the values contained in the sets. For example, if we use interval arithmetic to approximate the
sets we get:

a ∈ [0, 2], b ∈ [6, 20], and a+b ∈ [6, 22]
Which can be easily stored and manipulated (we only require two numbers to encode an interval).

Notice how any abstraction will make us lose some precision. This is the inherent trade-off of computing
using Abstract Interpretation. We lose precision.

Notice that overapproximating the value of variables can lead us often to think that a piece of code may
be erroneous even if it does not. Consider:

1 b = bool(input())
2
3 if b:
4 a = 2
5 b = -1
6 else:
7 a = 6
8 b = 3
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9
10 c = a / b # c is either -2 or 2

It is easy for us to run this example in all possible inputs, as there are only two. If b is True , then we
know that c is -2 , and if b is False , then we know that c is 2 . We know that no matter the input, the
code will never fail! But when we abstractly interpret the code using intervals as an overapproximation, we
get that a ∈ [2, 6] and b ∈ [−1, 3], so when we try to run a / b we are alerted that we may be dividing
by zero3.

When we abstractly interpret a piece of code and get an error, the error may not exist.
On the other hand, if we abstractly interpret a piece of code and find no error in it, we can be sure that

the code will never fail because we have tested the code on an overapproximation of all possible values4.
This property is called soundness and it is central to verification and other areas of Static Analysis.

Notice that we do not care about soundness in this work. Our goal is to build a tool that does not
overwhelm the common developer but helps them to find true bugs! i.e. we do not want false positives just
as many true positives as possible.

Fortunately, if the overapproximationwe are using allows us to distinguish between single values, e.g. the
overapproximation can tell us that a has been set to the value 5 after the assignment a = 5 5, then it is
possible for us to check if two single values are equal or different. If we are able to assert with certainty that
two values are equal or different, then we are able to find true positive comparisons (opposed to maybe
True comparisons)6.

The formal definition of an overapproximation is an Abstract Domain. An Abstract Domain is composed
of a lattice, a concretisation function, an abstraction function, and widening and narrowing operators.

A lattice is a partially ordered set (𝐿, ≤) with the following properties:

• Every two elements 𝑎, 𝑏 ∈ 𝐿 have a lower bound (𝑢 ∈ 𝐿 such that 𝑢 ≤ 𝑎 and 𝑢 ≤ 𝑏). The operation
of finding the lower bound between two elements is called merge and is denoted by 𝑎 ⊓ 𝑏.

• Every two elements 𝑎, 𝑏 ∈ 𝐿 have an upper bound (𝑢 ∈ 𝐿 such that 𝑎 ≤ 𝑢 and 𝑏 ≤ 𝑢). The operation
of finding the upper bound between two elements is called join and is denoted by 𝑎 ⊔ 𝑏.

• There is an element bigger than any other (𝑢 ∈ 𝐿 such that ∀𝑥 ∈ 𝐿.𝑥 ≤ 𝑢), and it is denoted by ⊤.
• There is an element smaller than any other (𝑢 ∈ 𝐿 such that ∀𝑥 ∈ 𝐿.𝑢 ≤ 𝑥), and it is denoted by ⊥.

Given two lattices, (𝐿1, ≤ 𝐿1
, ⊓𝐿1

, ⊔𝐿1
, ⊤𝐿1

, ⊥𝐿1
) and (𝐿2, ≤ 𝐿2

, ⊓𝐿2
, ⊔𝐿2

, ⊤𝐿2
, ⊥𝐿2

), we can define
𝛼 and 𝛾, where:

• 𝛼 ∶ 𝐿1 → 𝐿2 called the abstraction function.
• 𝛾 ∶ 𝐿2 → 𝐿1 called the concretisation function.

𝐿1 is often called the Concrete Domain and 𝐿2 is called the Abstract Domain. In this work, the Concrete
Domain will always be defined as the power set of the values in the language with ∈ as the order operator.

3Dividing by zero throws an Exception in Python.
4Assuming no built-in value has been changed prior to the execution of the code.
5The sign overapproximation (or Sign Interval Abstract Domain) has only three possible values: - , 0 and + , while the

interval overapproximation (or Interval Abstract Domain) contains any interval [𝑎, 𝑏] with 𝑎, 𝑏 ∈ ℝ. Therefore, if we use the
Interval Abstract Domain we are able to tell when we know a variable has a specific value rather than many. On the other hand, it is
impossible for us to determine a unique value using Sign Interval Domain other than the case 0 .

6Consider the result of [4,4] == [3,3] ( False ) and the result of [3,8] == [2,3] (it may be True or False )
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Notation: It is customary to use the symbol ♯ to refer to the functions and semantics associated
with the Abstract Domain, and the lack of it as the functions and semantics of the Concrete
Domain. For example, if Int is the set of all integers then Int♯ is an Abstract Domain for Int,
e.g. given the Concrete Domain (𝒫(Int), ⊆, ∩, ∪, Int, ∅) we define the Abstract Domain (Int♯, ≤♯

, ⊓♯, ⊔♯, ⊤♯, ⊥♯, 𝛼, 𝛾), where 𝛼 ∶ Int → Int♯ and 𝛾 ∶ Int♯ → Int.

Coming back to the intervals example from before. Given the Concrete Domain of integers (𝒫(Int), ⊆
, ∩, ∪, Int, ∅), we can define the Intervals Abstract Domain Int♯ as (Int♯, ≤♯, ⊓♯, ⊔♯, [−∞, ∞], ∅, 𝛼, 𝛾) where:

• Every element of Int♯ is an interval [𝑎, 𝑏] with 𝑎, 𝑏 ∈ Int ∪ {−∞, ∞}.
• [𝑎, 𝑏] ≤♯ [𝑐, 𝑑] ⟺ 𝑐 ≤ 𝑎 ∧ 𝑏 ≤ 𝑑.
• [𝑎, 𝑏] ⊓♯ [𝑐, 𝑑] = [𝑚𝑎𝑥(𝑎, 𝑐), 𝑚𝑖𝑛(𝑏, 𝑑)].
• [𝑎, 𝑏] ⊔♯ [𝑐, 𝑑] = [𝑚𝑖𝑛(𝑎, 𝑐), 𝑚𝑎𝑥(𝑏, 𝑑)].
• 𝛼(𝐼) = [𝑚𝑖𝑛(𝐼), 𝑚𝑎𝑥(𝐼)] where 𝐼 is a set of integers.
• 𝛾([𝑎, 𝑏]) = {𝑖 ∈ Int ∶ 𝑎 ≤ 𝑖 ≤ 𝑏}.

The abstraction function allows us to take any value in our language and transport it to an overapproxim-
ation of our choosing, and the concretisation function allows us to take abstract values (overapproximations)
and operate with them back in the semantics of our language.

Given, for example, the Intervals Abstract Domain, we can now calculate the result of computing the
following piece of code:

1 if _:
2 a = 2
3 else:
4 a = 4
5 a -= 6

We know that the value of a in the then branch of the if statement is equal to [2, 2], and [4, 4] in the else
branch. The value of a after the execution of the if statement will be [2, 2] ∪ [4, 4] = [2, 4]. At the end of
the execution, the value of a lies inside the interval [−4, −2].

Notice that with a (Value) Abstract Domain, we can overapproximate the value of a single variable but
we cannot warranty termination of the evaluation of the code. Take for example:

1 a = 4
2 while not condition(a):
3 a += 3

Unrolling the loop, we get:

1 a = 4 # a ∈ [4, 4]
2
3 a += 3 # a ∈ [4, 7]
4 a += 3 # a ∈ [4, 10]
5 a += 3 # a ∈ [4, 13]
6 a += 3 # a ∈ [4, 16]
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7 ...
8 # a ∈ [4, 𝑖𝑛𝑓]

Because we do not know when condition(a) will be met, it is impossible for us to know how many
times will the while ’s body be executed, an so we know that a may be either 4, 7, 11, or any other integer.
An Abstract Interpreter is an interpreter and therefore will run the body of the while loop forever if we do
not do something to terminate it.

It is not possible to warranty to find a fixed point by just evaluating a piece of code over and over (the
body of the while loop). Thus, we have the need of finding a mechanism that allows us to ensure that the
evaluation of a loop will eventually terminate. Introduce the widening operator.

The idea of a widening operator is to make a series of ascending values reach a fixed point in a finite
amount of time.

Consider the (increasing) sequence from before7:

[4, 4][4, 7][4, 10][4, 13][4, 16][4, 19][4, 22][4, 25] ⋯

A widening operator is an operator, 𝜙, that takes two intervals, 𝑎 and 𝑏, and outputs a new interval,
𝑐 = 𝑎𝜙𝑏, such that the new interval contains the old intervals 𝑎, 𝑏 ≤ 𝑐. The widening operator must
warranty that when applied over and over on an increasing sequence it will, after a finite amount of steps,
find a fixed point (it stabilizes). Take for example the following widening operator:

[𝑎, 𝑏]𝜙[𝑐, 𝑑] = {
[𝑚𝑖𝑛(𝑎, 𝑐), ∞], if 𝑏 > 15
[𝑚𝑖𝑛(𝑎, 𝑐), 𝑚𝑎𝑥(𝑏, 𝑑)], otherwise

Applying the operator over our sequence over an over we will get:

[4, 7][4, 10][4, 13][4, 16][4, ∞][4, ∞][4, ∞] ⋯

Notice that we found a fixed point, namely, [4, 𝑖𝑛𝑓]. We have arrived now at the top of the latter.
Notice how the cutoff of the sequence must be defined beforehand (in our case any interval with a value

bigger than 15 defaults to ∞). This is a little bit annoying as one would like for the Abstract Interpreter to
work under any condition, but this is the price to pay for termination. We need to set some parameters by
hand.

There is another operator called the narrowing operator. Its purpose is to climb down the latter and get
a more precise approximation. Notice that not all Abstract Domains require the definition of widening and
narrowing operators as not all of them have infinite increasing or decreasing sequences. This is the case for
this work, no single Abstract Domain defined in here requires widening and narrowing operators, there are
no infinite increasing or decreasing sequences in the Abstract Interpreter defined in this work.

For a deeper discussion on all numerical Abstract Domains available see Miné (2004).

2.6.4 State Abstract Domain

The Abstract Domains presented before let us analyse one variable at the time. To analyse the state of the
program we define an Abstract Domain for the state of the program. How to do this? Well, if we assume
that the language allows no aliasing, then we can build the State Abstract Domain as:

𝑆𝑡𝑎𝑡𝑒 ∶ 𝑉 𝑎𝑟 → 𝑉 𝑎𝑙
7Notice that: [4, 4] ≤ [4, 7] ≤ [4, 11]
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𝑆𝑡𝑎𝑡𝑒♯ ∶ 𝑉 𝑎𝑟 → 𝑉 𝑎𝑙♯

If the State of the program is defined as a function from 𝑉 𝑎𝑟s into their values (𝑆𝑡𝑎𝑡𝑒 ∶ 𝑉 𝑎𝑟 → 𝑉 𝑎𝑙),
and 𝑉 𝑎𝑙♯ is the Abstract Domain for values in the languages, then the function 𝑆𝑡𝑎𝑡𝑒♯ ∶ 𝑉 𝑎𝑟 → 𝑉 𝑎𝑙♯ is an
Abstract Domain8 for the state of the program.

As an example consider:

1 int main() {
2 int cond1, cond2, a, b, c;
3 std::cin » cond1 » cond2;
4
5 if (cond1) {
6 a = 0
7 b = 20
8 } else if (cond2) {
9 a = 2

10 b = 6
11 } else {
12 a = 1
13 b = 9
14 }
15 c = a + b;
16 return 0;
17 }

Note: This example is written in C++ because we can assume all variables to have a set type, a unique
type. In C++, a variable always has a value even if none is given to it. In Python, a variable can have no
value, or it can be undefined (as it happens when a variable is deleted).

Suppose that the StateAbstractDomain for this piece of code is a function from the set {𝑐𝑜𝑛𝑑1, 𝑐𝑜𝑛𝑑2, 𝑎, 𝑏, 𝑐}
to the Interval Abstract Domain. If we evaluate the code line by line we will get:

1 // T: means Top
2 int main() {
3 int cond1, cond2, a, b, c;
4 // {'cond1': ⊤, 'cond2': ⊤, 'a': ⊤, 'b': ⊤, 'c': ⊤}
5 std::cin » cond1 » cond2;
6 // {'cond1': ⊤, 'cond2': ⊤, 'a': ⊤, 'b': ⊤, 'c': ⊤}
7
8 if (cond1) {
9 a = 0;

10 // {'cond1': ⊤, 'cond2': ⊤, 'a': 0, 'b': ⊤, 'c': ⊤}
11 b = 20;
12 // {'cond1': ⊤, 'cond2': ⊤, 'a': 0, 'b': 20, 'c': ⊤}
13 } else {
14 if (cond2) {

8For a deeper look and a proof of this statement see Nielson et al. (2005), Subchapter 4.4.
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15 a = 2;
16 // {'cond1': 0, 'cond2': ⊤, 'a': 2, 'b': ⊤, 'c': ⊤}
17 b = 6;
18 // {'cond1': 0, 'cond2': ⊤, 'a': 2, 'b': 6, 'c': ⊤}
19 } else {
20 a = 1;
21 // {'cond1': 0, 'cond2': 0, 'a': 1, 'b': ⊤, 'c': ⊤}
22 b = 9;
23 // {'cond1': 0, 'cond2': 0, 'a': 1, 'b': 9, 'c': ⊤}
24 }
25 // {'cond1': 0, 'cond2': ⊤, 'a': [1, 2], 'b': [6, 9], 'c': ⊤}
26 }
27 // {'cond1': ⊤, 'cond2': ⊤, 'a': [0, 2], 'b': [6, 20], 'c': ⊤}
28 c = a + b;
29 // {'cond1': ⊤, 'cond2': ⊤, 'a': [0, 2], 'b': [6, 20], 'c': [6, 22]}
30 return 0;
31 }

Excellent! We have done it! We have an idea of how to build an Abstract Interpreter for a language with
only one type of variable, a global scope, and no aliasing.

2.6.5 Abstract Semantics

Abstract Semantics is the name that is given to the semantics that operate with abstract values (from the
Abstract Domain), as opposed to Concrete Semantics that work with the original (concrete) values. To
define these semantics the original (concrete) semantics and the Abstract values are required. The process
of defining the abstract semantics involves applying the concretisation and abstraction functions onto the
semantic rules we want to transform.

Often, this process is straightforward and no need to use the abstraction or concretisation functions is
necessary, all that is needed is to understand how each operation from the Concrete Domain translates to the
new Domain. For example, the abstract operation + between two (interval) integer numbers is defined as:

[𝑎, 𝑏] +♯ [𝑐, 𝑑] ∶= [𝑎 + 𝑐, 𝑏 + 𝑑]

The semantics of interval arithmetic are well studied and can be easily implemented from theory (Hayes,
2003).

2.6.6 Missing Bits

A robust Abstract Interpreter should be able to do more than just what has been said here.
Miné (2004) extends an Abstract Interpreter with the backward assignment. The backward assignment

is meant to restrict the possible values a variable may have when it enters an if statement. Consider the
following piece of C++ ( a and b are integers):

1 // {'a': [2, 4], 'b': ⊤}
2 if (a < 3) {
3 // Applying backward assignment: 𝑎 < 3
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4 // {'a': 2, 'b': ⊤}
5 b = a;
6 // {'a': 2, 'b': 2}
7 } else {
8 // Applying backward assignment: 𝑎 ≥ 3
9 // {'a': [3, 4], 'b': ⊤}

10 b = a - 2;
11 // {'a': [3, 4], 'b': [1, 2]}
12 }
13 // {'a': [2, 4], 'b': [1, 2]}

Notice that if we ignore backward assignment the interval for b is [0, 4]. Backward assignment lets
us narrow down the overapproximation, which means that we can have a tighter overapproximation and
consequently less false positives.

Another characteristic that will not be used in this work is relational Abstract Domains. A relational
Abstract Domain keeps some of the relationships between variables which means that their overapproxima-
tions are tighter than those of non-relational overapproximations. We will only use non-relational Abstract
Domains. For a detailed explanation on relational and non-relational Abstract Domains see Miné (2004).
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Chapter 3

Abstract Interpretation for Python

In this chapter, an Abstract Interpreter for Python is proposed. The chapter is divided into five parts:
definition of semantics, concrete semantics for Value Analysis of Python code, abstract semantics from
the concrete semantics, an extension to abstract semantics to work with NumPy arrays, and the abstract
semantics of type annotations. This chapter is intended as a guide on how was the Abstract Interpreter built.
A deeper look at the gory details of the concrete and abstract semantics are given in Appendix A.

3.1 Semantics

In Mathematics, the word “semantics” refers to the meaning of sentences in formal languages (Gunter, 1992).
The semantics of programming languages consist of what a piece of code means, how to interpret it, and
how to analyse it.

Mitchell (1996) classifies programming languages semantics into three categories: axiomatic, denota-
tional, and operational. Axiomatic semantics describe the behaviour of code with mathematical logic. The
goal of denotational semantics is to find a mathematical “object” that represents what a program does. The
program meaning is given by the object properties or lack of thereof. Operational semantics are concerned
with rules that tell how to interpret or execute a piece of code. No meaning is given to the parts of the
program, but a meaning is given as the program is run.

Semantics of
Programming Languages

Axiomatic
Semantics

Hoare Logic

Denotational
Semantics

Operational
Semantics

Small-step Semantics Big-step Semantics

Figure 3.1: Classification of programming languages semantics by Mitchell (1996)

On the one hand, denotational semantics must not provide a way to determine an implementation. On
the other hand, an implementation can be easily built from operational semantics. Small-step semantics, one
kind of operational semantics, define what the program does by describing a set of rules over the syntax of
the language. The meaning of the program is given by the application of the rules. The set of rules is often a
specification of what a compiler does. Thus, it is not surprising that all efforts to define a formal semantics
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for Python have been small-step semantics as it is easy to define rules from the translation process from
code to “binary” (Ranson et al., 2008; Guth, 2013; Politz et al., 2013; Fromherz et al., 2018).

For this reason, we define in this work some small-steps semantics for Python. We define them from the
execution model of CPython, that is, the official implementation of the Python language. In the following
two sections, we define the small-step semantics of a portion of Python, our concrete semantics for the
problem; and, based on them we will define some abstract semantics for Python.

3.2 Concrete Semantics of Python

Before we define the concrete semantics of Python, we need to define how to write a piece of code in Python.
Python is a mature and large language, thus we will take just a portion of it into account. In Figure 3.2, we
present the subset of Python that we intend to study in this work.

𝑒𝑥𝑝𝑟 ∶= 𝑖 ∈ ℤ | 𝑗 ∈ float | True | False | None primitive values
| 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 variable name
| 𝑒𝑥𝑝𝑟 𝑜𝑝 𝑒𝑥𝑝𝑟 | 𝑒𝑥𝑝𝑟 𝑐𝑚𝑝𝑜𝑝 𝑒𝑥𝑝𝑟 binary operations
| 𝑒𝑥𝑝𝑟(𝑒𝑥𝑝𝑟 ∗ ) function call
| 𝑒𝑥𝑝𝑟.𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 attribute access
| 𝑒𝑥𝑝𝑟[𝑒𝑥𝑝𝑟] subscript access
| [𝑒𝑥𝑝𝑟 ∗ ] lists
| (𝑒𝑥𝑝𝑟 ∗ ) tuples

𝑠𝑡𝑚𝑡 ∶= del 𝑒𝑥𝑝𝑟 delete
| 𝑒𝑥𝑝𝑟 = 𝑒𝑥𝑝𝑟 assignment
| 𝑒𝑥𝑝𝑟 𝑜𝑝 = 𝑒𝑥𝑝𝑟 augmented assignment
| 𝑒𝑥𝑝𝑟: 𝑒𝑥𝑝𝑟 = 𝑒𝑥𝑝𝑟 type annotation
| while 𝑒𝑥𝑝𝑟: 𝑠𝑡𝑚𝑡+ loop
| if 𝑒𝑥𝑝𝑟: 𝑠𝑡𝑚𝑡+ else: 𝑠𝑡𝑚𝑡+ if-else
| import 𝑎𝑙𝑖𝑎𝑠+ | from 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 import 𝑎𝑙𝑖𝑎𝑠+ import library
| 𝑒𝑥𝑝𝑟

𝑜𝑝 ∶= + | - | * | / | % | ** | « | » | //
𝑐𝑚𝑝𝑜𝑝 ∶= < | <= | > | >=

𝑎𝑙𝑖𝑎𝑠 ∶= 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 | 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 as 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟

Figure 3.2: Reduced Python syntax used throughout this work.

We intentionally omit any details related to the spacing of blocks in Python, as our main focus is the
meaning of Python values and not how blocks of statements are defined in the language.

We follow the same approach taken by (Fromherz et al., 2018) and define the state of the program with
a global scope and a heap. Python memory is represented as a function from memory positions (Addr) to
python values (Val). The global scope is defined as a function from identifiers (Iden) to memory positions
(Addr).

Global ∶= Iden → Addr ∪ {Undefined}
Heap ∶= Addr → Val ∪ {Undefined}

In Python, everything is an object: numbers, lists, classes and even functions. We separate python values
into three categories: primitive values, like numbers, booleans and None ; Objects, like lists and tuples;
and, primitive functions, like int.__add__ .
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Val ∶= PrimVal | Object | <prim-callable>
| Addr × <prim-callable> function associated to value

PrimVal ∶= 𝑖 ∈ ℤ | 𝑗 ∈ float | True | False | None
Object ∶= Type × Addr × (Key → Addr ∪ {Undefined})
Type ∶= List | Tuple
Key ∶= Iden + (string × Val)

We can now define the rules that describe the behaviour of a program, that is, the small-step semantics
of the language. The equations 𝔼J𝑒𝑥𝑝𝑟K and 𝕊J𝑠𝑡𝑚𝑡K from Figure 3.3 define the small-step semantics.

𝔼J𝑒𝑥𝑝𝑟K ∶ Global × Heap
→ Global × Heap × Val

𝔼J𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟K (𝒢, ℋ) ∶=
if 𝒢(𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟) = Undefined
then <Execution Halt>
else (𝒢, ℋ, ℋ (𝒢 (𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟)))

𝔼J𝑛K (𝒢, ℋ) ∶= (𝒢, ℋ, 𝑛) for all 𝑛 ∈ ℤ

𝔼J𝑒𝑥𝑝𝑟1 𝑜𝑝 𝑒𝑥𝑝𝑟2K (𝒢, ℋ) ∶=
let (𝒢1, ℋ1, 𝑣1) ∶= 𝔼J𝑒𝑥𝑝𝑟1K (𝒢, ℋ)

(𝒢2, ℋ2, 𝑣2) ∶= 𝔼J𝑒𝑥𝑝𝑟2K (𝒢1, ℋ1)
𝑝𝑟𝑖𝑚_𝑜𝑝 ∶= 𝑔𝑒𝑡_𝑝𝑟𝑖𝑚_𝑜𝑝 (𝑜𝑝, 𝑣1, 𝑣2)

in 𝑝𝑟𝑖𝑚_𝑜𝑝 (𝒢2, ℋ2)

𝕊J𝑠𝑡𝑚𝑡K ∶ Global × Heap → Global × Heap

𝕊J𝑠𝑡𝑚𝑡1; 𝑠𝑡𝑚𝑡2K (𝒢, ℋ) ∶=
let (𝒢1, ℋ1) ∶= 𝕊J𝑠𝑡𝑚𝑡1K (𝒢, ℋ)
in 𝕊J𝑠𝑡𝑚𝑡2K (𝒢1, ℋ1)

𝕊J𝑖𝑑 = 𝑒𝑥𝑝𝑟K (𝒢, ℋ) ∶=
let (𝒢1, ℋ1, 𝑣𝑎𝑙) ∶= 𝔼J𝑒𝑥𝑝𝑟K (𝒢, ℋ)

𝑎𝑑𝑛𝑒𝑤 ∶= 𝑔𝑒𝑡_𝑓𝑟𝑒𝑒_𝑎𝑑𝑑𝑟(ℋ1)
in (𝒢1[𝑖𝑑 → 𝑎𝑑𝑛𝑒𝑤], ℋ1[𝑎𝑑𝑛𝑒𝑤 → 𝑣𝑎𝑙])

𝒢𝑒𝑚𝑝𝑡𝑦 ∶ Global
𝒢𝑒𝑚𝑝𝑡𝑦 ∶= Undefined

ℋ𝑒𝑚𝑝𝑡𝑦 ∶ Heap
ℋ𝑒𝑚𝑝𝑡𝑦 ∶= Undefined

Figure 3.3: A portion of the Small-steps semantics for Python. The functions 𝑔𝑒𝑡_𝑝𝑟𝑖𝑚_𝑜𝑝
and 𝑔𝑒𝑡_𝑓𝑟𝑒𝑒_𝑎𝑑𝑑𝑟 are defined in Appendix A

The construction <Execution Halt> indicates that the evaluation cannot go any further, i.e. the inter-
preter will stop and throw an exception. For example, accessing to a variable that has not yet been defined is
considered an error (Python will throw an exception if this happens).

The meaning of our program is given by the function 𝕊J𝑠𝑡𝑚𝑡K with type State → State (where State ∶=
Global×Heap). In this work, we are interested on the values that result from the application of the function
𝕊J𝑠𝑡𝑚𝑡K on a clean state, which is a state that has only built-in variables defined. Statements modify the
state of the program while expressions modify the state of the program and return a python value as result,
e.g. the expression ls.pop() removes the last element in the list ls and returns the value contained. This
is the reason why the type of the function 𝔼J𝑒𝑥𝑝𝑟K is State → State × Val.

Let us consider the simple program:

1 b = 2
2 a = b + 3

Wecan apply the semantics rules on the example by evaluating𝕊J𝑏 = 2; 𝑎 = 𝑏 + 3K (𝒢𝑒𝑚𝑝𝑡𝑦, ℋ𝑒𝑚𝑝𝑡𝑦).
Figure 3.4 presents the step by step of the evaluation.
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𝕊J𝑏 = 2; 𝑎 = 𝑏 + 3K (𝒢𝑒𝑚𝑝𝑡𝑦, ℋ𝑒𝑚𝑝𝑡𝑦)
≝ let (𝒢1, ℋ1) ∶= 𝕊J𝑏 = 2K (𝒢𝑒𝑚𝑝𝑡𝑦, ℋ𝑒𝑚𝑝𝑡𝑦)

in 𝕊J𝑎 = 𝑏 + 3K (𝒢1, ℋ1)

𝕊J𝑏 = 2K (𝒢𝑒𝑚𝑝𝑡𝑦, ℋ𝑒𝑚𝑝𝑡𝑦)
≝ let (𝒢1, ℋ1, 𝑣𝑎𝑙) ∶= 𝔼J2K (𝒢𝑒𝑚𝑝𝑡𝑦, ℋ𝑒𝑚𝑝𝑡𝑦)

𝑎𝑑𝑛𝑒𝑤 ∶= 𝑔𝑒𝑡_𝑓𝑟𝑒𝑒_𝑎𝑑𝑑𝑟(ℋ1)
in (𝒢1[𝑏 ↦ 𝑎𝑑𝑛𝑒𝑤], ℋ1[𝑎𝑑𝑛𝑒𝑤 ↦ 𝑣𝑎𝑙])

≝ let (𝒢1, ℋ1, 𝑣𝑎𝑙) ∶= (𝒢𝑒𝑚𝑝𝑡𝑦, ℋ𝑒𝑚𝑝𝑡𝑦, 2)
𝑎𝑑𝑛𝑒𝑤 ∶= 𝑔𝑒𝑡_𝑓𝑟𝑒𝑒_𝑎𝑑𝑑𝑟(ℋ1)

in (𝒢1[𝑏 ↦ 𝑎𝑑𝑛𝑒𝑤], ℋ1[𝑎𝑑𝑛𝑒𝑤 ↦ 𝑣𝑎𝑙])
= let 𝑎𝑑𝑛𝑒𝑤 ∶= 𝑔𝑒𝑡_𝑓𝑟𝑒𝑒_𝑎𝑑𝑑𝑟(ℋ𝑒𝑚𝑝𝑡𝑦)

in (𝒢𝑒𝑚𝑝𝑡𝑦[𝑏 ↦ 𝑎𝑑𝑛𝑒𝑤], ℋ𝑒𝑚𝑝𝑡𝑦[𝑎𝑑𝑛𝑒𝑤 ↦ 2])
= let 𝑎𝑑𝑛𝑒𝑤 ∶= 0

in (𝒢𝑒𝑚𝑝𝑡𝑦[𝑏 ↦ 𝑎𝑑𝑛𝑒𝑤], ℋ𝑒𝑚𝑝𝑡𝑦[𝑎𝑑𝑛𝑒𝑤 ↦ 2])
= (𝒢𝑒𝑚𝑝𝑡𝑦[𝑏 ↦ 0], ℋ𝑒𝑚𝑝𝑡𝑦[0 ↦ 2])
= ([𝑏 ↦ 0], [0 ↦ 2]) simplifying notation

= let (𝒢1, ℋ1) ∶= ([𝑏 ↦ 0], [0 ↦ 2])
in 𝕊J𝑎 = 𝑏 + 3K (𝒢1, ℋ1)

= 𝕊J𝑎 = 𝑏 + 3K ([𝑏 ↦ 0], [0 ↦ 2])

≝ let (𝒢1, ℋ1, 𝑣𝑎𝑙) ∶= 𝔼J𝑏 + 3K ([𝑏 → 0], [0 → 2])
𝑎𝑑𝑛𝑒𝑤 ∶= 𝑔𝑒𝑡_𝑓𝑟𝑒𝑒_𝑎𝑑𝑑𝑟(ℋ1)

in (𝒢1[𝑎 ↦ 𝑎𝑑𝑛𝑒𝑤], ℋ1[𝑎𝑑𝑛𝑒𝑤 ↦ 𝑣𝑎𝑙])

= ⋯ =

= let (𝒢1, ℋ1, 𝑣𝑎𝑙) ∶= ([𝑏 ↦ 0], [0 ↦ 2], 5)
𝑎𝑑𝑛𝑒𝑤 ∶= 𝑔𝑒𝑡_𝑓𝑟𝑒𝑒_𝑎𝑑𝑑𝑟(ℋ1)

in (𝒢1[𝑎 ↦ 𝑎𝑑𝑛𝑒𝑤], ℋ1[𝑎𝑑𝑛𝑒𝑤 ↦ 𝑣𝑎𝑙])
= let 𝑎𝑑𝑛𝑒𝑤 ∶= 𝑔𝑒𝑡_𝑓𝑟𝑒𝑒_𝑎𝑑𝑑𝑟([0 ↦ 2])

in ([𝑏 ↦ 0][𝑎 ↦ 𝑎𝑑𝑛𝑒𝑤], [0 ↦ 2][𝑎𝑑𝑛𝑒𝑤 ↦ 5])
= ([𝑏 ↦ 0][𝑎 ↦ 1], [0 ↦ 2][1 ↦ 5])
= ([𝑏 ↦ 0, 𝑎 ↦ 1], [0 ↦ 2, 1 ↦ 5])

Figure 3.4: Evaluation of the program b = 2; a = b +3 with the small-step semantics
from Figure 3.3
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At the end of the execution, the state of the program is:

𝒢𝑜𝑢𝑡𝑝𝑢𝑡 ∶ Iden → Addr ∪ {Undefined}
’a’ ↦ 1
’b’ ↦ 0

𝑖𝑑 ↦ Undefined

ℋ𝑜𝑢𝑡𝑝𝑢𝑡 ∶ Addr → Val ∪ {Undefined}
0 ↦ 2
1 ↦ 5
𝑛 ↦ Undefined

This is telling us that the variables a and b hold the values 2 and 5 , respectively.
Notice that we have not yet defined the semantics for the general case 𝕊J𝑒𝑥𝑝𝑟1 = 𝑒𝑥𝑝𝑟2K but only

for the case 𝕊J𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 = 𝑒𝑥𝑝𝑟K. Defining the small-step semantics on the syntax presented before
is inconvenient. To see why working with this syntax is inconvenient, observe that the delete statement,
del 𝑒𝑥𝑝𝑟, does not expect a value from the evaluation of the expression 𝑒𝑥𝑝𝑟 but a name or position in
memory. Both del a and ls = [1,9,4,5]; del ls[2] are valid python statements, but their semantics
depend on the expression being evaluated. Inversely, the return value of evaluating expressions depends on
the context they are being called, the expression ls[2] returns a value or a position in memory depending
on the context is being used. 4 + ls[2] , ls[2] = 4 and del ls[2] are examples of the three different
contexts where ls[2] can be called.

How could an expression like ls[2] know the context where it is going to be used? We opted to follow
what CPython does. CPython extends the syntax of expressions to allow them to know the context from
where they are being called. The new (extended) syntax can be seen in Figure 3.5.

𝑒𝑥𝑝𝑟 ∶= Int(𝑖) for 𝑖 ∈ ℤ | Float(𝑗) for 𝑗 ∈ float
| True | False | None primitive values
| Name(𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟, 𝑒𝑥𝑝𝑟_𝑐𝑜𝑛𝑡𝑒𝑥𝑡) variable name
| BinOp(𝑜𝑝, 𝑒𝑥𝑝𝑟, 𝑒𝑥𝑝𝑟)
| Compare(𝑒𝑥𝑝𝑟, 𝑐𝑚𝑝𝑜𝑝, 𝑒𝑥𝑝𝑟) binary operations
| Call(𝑒𝑥𝑝𝑟, 𝑒𝑥𝑝𝑟 ∗ ) function call
| Attribute(𝑒𝑥𝑝𝑟, 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟) attribute access
| Subscript(𝑒𝑥𝑝𝑟, 𝑒𝑥𝑝𝑟, 𝑒𝑥𝑝𝑟_𝑐𝑜𝑛𝑡𝑒𝑥𝑡) subscript access
| List(𝑒𝑥𝑝𝑟 ∗ ) lists
| Tuple(𝑒𝑥𝑝𝑟 ∗ ) tuples

𝑠𝑡𝑚𝑡 ∶= Delete(𝑒𝑥𝑝𝑟) delete
| Assign(𝑒𝑥𝑝𝑟, 𝑒𝑥𝑝𝑟) assignment
| AugAssign(𝑒𝑥𝑝𝑟, 𝑜𝑝, 𝑒𝑥𝑝𝑟) augmented assignment
| AnnAssign(𝑒𝑥𝑝𝑟, 𝑒𝑥𝑝𝑟, 𝑒𝑥𝑝𝑟) type annotation
| While(𝑒𝑥𝑝𝑟, 𝑠𝑡𝑚𝑡+) loop
| If(𝑒𝑥𝑝𝑟, 𝑠𝑡𝑚𝑡+, 𝑠𝑡𝑚𝑡+) if
| Import(𝑎𝑙𝑖𝑎𝑠+) import library
| ImportFrom(𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟, 𝑎𝑙𝑖𝑎𝑠+) import from
| Expr(𝑒𝑥𝑝𝑟)

𝑒𝑥𝑝𝑟_𝑐𝑜𝑛𝑡𝑒𝑥𝑡 ∶= Load | Store | Del
𝑜𝑝 ∶= Add | Sub | Mult | Div | Mod | Pow

| LShift | RShift | FloorDiv
𝑐𝑚𝑝𝑜𝑝 ∶= Lt | LtE | Gt | GtE

𝑎𝑙𝑖𝑎𝑠 ∶= 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 | (𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟, 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟)

Figure 3.5: Python syntax used to define the semantics of the Abstract Interpreter.
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This is the same syntax that is used by the parser implemented by CPython (Van Rossum et al., 2007).
The developer is not supposed to write in this new syntax. The parser takes code written in the first syntax
and defines a proper context (Load, Store, or Del) for the expressions Name and Subscript . All other
expressions are considered to have context Load by default.

The following is the informal meaning of each context:

Load indicates that the result of evaluating the expressionwill be used in further computations. For example,
the result of evaluating the expression b in b + 2 is a value.

Store indicates that we want to save a value into the expression. For example, the result of evaluating the
expression b in b = 2 is the location of b in the global scope.

Del indicates that we want to delete the expression from where it is stored. For example, the result of
evaluating the expression b in del b is the name that identifies the variable, b .

InCPython, the expressions Attribute , Subscript and Name have a context as part of their definition.
In our specification, only Subscript and Name have a context as we are not interested in modifying or
deleting the value of any attribute. No attribute for built-in functions and objects can be modified or deleted.
For example, given the list a = [2,3] , the statements del a.insert and a.insert = 3 are erroneous
in Python, thus we have no need to allow Attribute s to be deleted or modified.

In Figure 3.6, the small-step semantics for the new syntax are presented.
Notice the increase in the number of <Execution Halt>s in the semantics. These increase is due to all

possible errors a parser may make. The Abstract Interpreter will also fail if there is a failure in the parser, we
suppose that the parser works as intended.

Expressions return one of three different valuesVal,Object×(string×Val) or Iden. The value returned
depends on the context the expression is called and how is it accessed:

• Val: is returnedwhen the expressions Subscript and Name have context Load. All other expressions
return only Vals.

• Iden: is returned when the expression Name has context Del or Store.
• Object × (string × Val): is returned when the expression Subscript has context Del or Store.

3.3 Abstract Semantics

In this section, we will define the abstract semantics of the language. To define them, we need to define first
an Abstract Domain for the state of the program. Recall that Concrete semantics work on Python values
(numbers, constants, functions, lists, etc) and abstract semantics work on Abstract Python values.

First, we will define the Abstract Python values. At last, we will show the new semantics, the abstract
semantics.

3.3.1 State Abstract Domain

Before we define the Abstract Domain for a state of the program,Global×Heap, we will define the Abstract
Domain for a primitive value in the language. Concrete primitive values are defined as

PrimVal♯ ∶= Int♯ | Float♯ | Bool♯ | None♯ | ⊤PrimVal | ⊥PrimVal

The Abstract Domain for primitive values is constructed from individual Abstract Domains, one Abstract
Domain per each one of the types of values that PrimVal holds as it can be seen in Figure 3.7.



3.3. Abstract Semantics 27

𝔼J𝑒𝑥𝑝𝑟K ∶ Global × Heap
→ Global
×Heap
×Val ∪ (Object × (string × Val)) ∪ Iden

𝔼JName(𝑖𝑑)K (𝒢, ℋ) ∶=
match 𝑐𝑡𝑥 in

case Load → if 𝒢(𝑖𝑑) = Undefined
then if 𝑖𝑠𝑏𝑢𝑖𝑙𝑡𝑖𝑛(𝑖𝑑)

then (𝒢, ℋ, <builtin-val>(𝑖𝑑))
else <Execution Halt>

else (𝒢, ℋ, ℋ (𝒢 (𝑖𝑑)))
case Store → (𝒢, ℋ, 𝑖𝑑) to be assigned
case Del → (𝒢, ℋ, 𝑖𝑑) to be deleted

𝔼JInt(𝑛)K (𝒢, ℋ) ∶= (𝒢, ℋ, 𝑛)

𝔼JBinOp(𝑜𝑝, 𝑎, 𝑏)K (𝒢, ℋ) ∶=
let (𝒢1, ℋ1, 𝑣1) ∶= 𝔼J𝑎K (𝒢, ℋ)

(𝒢2, ℋ2, 𝑣2) ∶= 𝔼J𝑏K (𝒢1, ℋ1)
𝑝𝑟𝑖𝑚_𝑜𝑝 ∶= 𝑔𝑒𝑡_𝑝𝑟𝑖𝑚_𝑜𝑝 (𝑜𝑝, 𝑣1, 𝑣2)

in if 𝑘𝑖𝑛𝑑(𝑣1) ≠ Val ∨ 𝑘𝑖𝑛𝑑(𝑣2) ≠ Val
then <Execution Halt>
else let 𝑝𝑟𝑖𝑚_𝑜𝑝 ∶= 𝑔𝑒𝑡_𝑝𝑟𝑖𝑚_𝑜𝑝 (𝑜𝑝, 𝑣1, 𝑣2)

in 𝑝𝑟𝑖𝑚_𝑜𝑝 (𝒢2, ℋ2)

𝕊JAssign(𝑣𝑎𝑟, 𝑣𝑎𝑙)K (𝒢, ℋ) ∶=
let (𝒢1, ℋ1, 𝑎𝑠𝑠) ∶= 𝔼J𝑣𝑎𝑟K (𝒢, ℋ)

(𝒢2, ℋ2, 𝑟𝑖𝑔ℎ𝑡𝑣𝑎𝑙) ∶= 𝔼J𝑣𝑎𝑙K (𝒢1, ℋ1)
𝑟𝑣𝑎𝑙 ∶= if 𝑖𝑠_𝑣𝑎𝑙𝑢𝑒(𝑟𝑖𝑔ℎ𝑡𝑣𝑎𝑙) then 𝑣𝑎𝑙 else <Execution Halt>

in match 𝑎𝑠𝑠 in
case 𝑖𝑑 ∶ Val → (𝒢2[𝑎𝑠𝑠 ↦ 𝑟𝑣𝑎𝑙], ℋ2)
case ((𝑡, 𝑎𝑑𝑑𝑟, 𝑜) ∶ Object, (’index’, 𝑣𝑎𝑙 ∶ Val)) →

let 𝑠𝑒𝑡𝑖𝑛𝑑𝑒𝑥 ∶= 𝑔𝑒𝑡_𝑝𝑟𝑖𝑚_𝑠𝑒𝑡_𝑖𝑛𝑑𝑒𝑥(𝑡)
in 𝑠𝑒𝑡𝑖𝑛𝑑𝑒𝑥 (𝒢2, ℋ2, 𝑜, 𝑣𝑎𝑙, 𝑎𝑑𝑑𝑟, 𝑟𝑣𝑎𝑙)

case otherwise → <Execution Halt>

Figure 3.6: Small-step (concrete) semantics for Python using syntax from Figure 3.5.
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⊤Bool
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Figure 3.7: Lattice/Abstract Domain for primitive values.

In this Abstract Domain, joining any two differing values gives us a ⊤ value. If both values are of the
same ”type”, e.g. both are Int s, then the⊤will be of that type. For example, 5∪6 = ⊤Int and 5∪6.2 = ⊤PrimVal.

The selectedAbstract Domains for integers and floating point numbers are the simplest Abstract Domains
for numbers that work for Value Analysis. We do not use more complex Abstract Domains, like intervals,
because there is no need for them to analyse the shape of tensors.

Recall that the semantics of a program work on states, thus we need to define an abstract value for the
abstract semantics to work with. Remember that the state of a program is a value of type Global × Heap.
The abstract state of a program is defined as Global♯ × Heap♯, where:

Val♯ ∶= PrimVal♯ | Object♯ | <prim-callable>♯

PrimVal♯ ∶= Int♯ | Float♯ | Bool♯ | None♯ | ⊤PrimVal | ⊥PrimVal

Object♯ ∶= Type × Addr × (Key → Addr ∪ {Undefined})
Type ∶= List | Tuple
Key ∶= Iden + (string × Val♯)

Explaining in detail how is the Abstract Domain for the state defined is out of the scope of this chapter.
A throughout explanation on the construction of the Abstract Domain can be seen in Appendix A. We will
dedicate the rest of this section to motivate why has been this representation chosen.

Consider the following piece of code:

1 if s:
2 a = 2
3 b = a + 3
4 c = [0.0, a, b]
5 else:
6 a = 3
7 b = a + 2
8 c = [1, a, b]
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In the example, we do not know the value of s , and therefore, we have no idea which of the two
branches of the if statement will be executed. The solution that Abstract Interpretation presents us is to
run both branches separately, each with a copy of the state of the program. Then, all we need to do is to
find an overapproximation of the two new states. Fortunately, finding an overapproximation of the states is
what we built an Abstract Domain for. The join (∪State) operation of an Abstract Domain tells us the smallest
common overapproximation between the two states.

We know that the state at the end of the “then” branch is (𝒢1, ℋ1), and the state at the end of the “else”
branch is (𝒢2, ℋ2), where:

𝒢1(𝑖) =

⎧
{
{
⎨
{
{
⎩

0 if 𝑖 = ’s’
1 if 𝑖 = ’a’
2 if 𝑖 = ’b’
3 if 𝑖 = ’c’
Undefined otherwise

ℋ1(𝑛) =

⎧
{{{{{{
⎨
{{{{{{
⎩

⊤Val if 𝑛 = 0
2 if 𝑛 = 1
5 if 𝑛 = 2
(List, 3, 𝑙1) if 𝑛 = 3
3 if 𝑛 = 4
0.0 if 𝑛 = 5
2 if 𝑛 = 6
5 if 𝑛 = 7
Undefined otherwise

𝑙1(𝑖) =

⎧
{
{
⎨
{
{
⎩

4 if 𝑖 = ’size’
5 if 𝑖 = (’index’, 0)
6 if 𝑖 = (’index’, 1)
7 if 𝑖 = (’index’, 2)
Undefined otherwise

𝒢2(𝑖) =

⎧
{
{
⎨
{
{
⎩

0 if 𝑖 = ’s’
1 if 𝑖 = ’a’
2 if 𝑖 = ’b’
3 if 𝑖 = ’c’
Undefined otherwise

ℋ2(𝑛) =

⎧
{{{{{{
⎨
{{{{{{
⎩

⊤Val if 𝑛 = 0
3 if 𝑛 = 1
5 if 𝑛 = 2
(List, 3, 𝑙2) if 𝑛 = 3
3 if 𝑛 = 4
1 if 𝑛 = 5
3 if 𝑛 = 6
5 if 𝑛 = 7
Undefined otherwise

𝑙2(𝑖) =

⎧
{
{
⎨
{
{
⎩

4 if 𝑖 = ’size’
5 if 𝑖 = (’index’, 0)
6 if 𝑖 = (’index’, 1)
7 if 𝑖 = (’index’, 2)
Undefined otherwise

The result of joining the two states is (𝒢𝑛𝑒𝑤, ℋ𝑛𝑒𝑤), where:

𝒢𝑛𝑒𝑤(𝑖) =

⎧
{
{
⎨
{
{
⎩

0 if 𝑖 = ’s’
1 if 𝑖 = ’a’
2 if 𝑖 = ’b’
3 if 𝑖 = ’c’
Undefined otherwise

𝑙𝑛𝑒𝑤(𝑖) =

⎧
{
{
⎨
{
{
⎩

4 if 𝑖 = ’size’
5 if 𝑖 = (’index’, 0)
6 if 𝑖 = (’index’, 1)
7 if 𝑖 = (’index’, 2)
Undefined otherwise

ℋ𝑛𝑒𝑤(𝑛) =

⎧
{{{{{{
⎨
{{{{{{
⎩

⊤Val if 𝑛 = 0
⊤Int if 𝑛 = 1
5 if 𝑛 = 2
(List, 3, 𝑙𝑛𝑒𝑤) if 𝑛 = 3
3 if 𝑛 = 4
⊤PrimVal if 𝑛 = 5
⊤Int if 𝑛 = 6
5 if 𝑛 = 7
Undefined otherwise

Now that we have defined our abstract state, we can define the abstract semantics.
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3.3.2 Semantics for the Abstract State

Once we have defined the concrete semantics and Abstract State, defining abstract semantics is straightfor-
ward. All we need to do is to modify the concrete semantics to work with new values, see Figure 3.8.

𝔼♯J𝑒𝑥𝑝𝑟K ∶ Global♯ × Heap♯

→ Global♯

×Heap♯

× (Val♯ ∪ (Object♯ × (string × Val♯)) ∪ Iden)

𝕊♯J𝑒𝑥𝑝𝑟K ∶ Global♯ × Heap♯ → Global♯ × Heap♯

𝔼♯JName(𝑖𝑑)K (𝒢♯, ℋ♯) ∶=
match 𝑐𝑡𝑥 in

case Load → if 𝒢♯(𝑖𝑑) = Undefined
then if 𝑖𝑠𝑏𝑢𝑖𝑙𝑡𝑖𝑛(𝑖𝑑)

then (𝒢♯, ℋ♯, <builtin-val>(𝑖𝑑))
else let 𝑎𝑑 ∶= 𝑓𝑟𝑒𝑒𝑎𝑑𝑑𝑟(ℋ♯)

in (𝒢♯[𝑖𝑑 ↦ 𝑎𝑑], ℋ♯[𝑎𝑑 ↦ ⊤Val], ⊤Val)
else (𝒢♯, ℋ♯, ℋ♯ (𝒢♯ (𝑖𝑑)))

case Store → (𝒢♯, ℋ♯, 𝑖𝑑) to be assigned
case Del → (𝒢♯, ℋ♯, 𝑖𝑑) to be deleted

𝔼♯JInt(𝑛)K (𝒢♯, ℋ♯) ∶= (𝒢♯, ℋ♯, 𝑛)

𝕊♯JAssign(𝑣𝑎𝑟, 𝑣𝑎𝑙)K (𝒢, ℋ) ∶=
let (𝒢♯

1, ℋ♯
1, 𝑎𝑠𝑠) ∶= 𝔼♯J𝑣𝑎𝑟K (𝒢♯, ℋ♯)

(𝒢♯
2, ℋ♯

2, 𝑟𝑖𝑔ℎ𝑡𝑣𝑎𝑙) ∶= 𝔼♯J𝑣𝑎𝑙K (𝒢1♯, ℋ1♯)
𝑟𝑣𝑎𝑙 ∶= if 𝑖𝑠_𝑣𝑎𝑙𝑢𝑒♯(𝑟𝑖𝑔ℎ𝑡𝑣𝑎𝑙) then 𝑣𝑎𝑙 else <Execution Halt>

in match 𝑎𝑠𝑠 in
case _ ∶ Val → (𝒢♯

2[𝑎𝑠𝑠 ↦ 𝑟𝑣𝑎𝑙], ℋ♯
2)

case ((𝑡, 𝑎𝑑𝑑𝑟, 𝑜) ∶ Object, (’index’, 𝑣𝑎𝑙 ∶ Val♯)) →
let 𝑠𝑒𝑡𝑖𝑛𝑑𝑒𝑥♯ ∶= 𝑔𝑒𝑡_𝑝𝑟𝑖𝑚_𝑠𝑒𝑡_𝑖𝑛𝑑𝑒𝑥♯(𝑡)
in 𝑠𝑒𝑡𝑖𝑛𝑑𝑒𝑥♯ (𝒢♯

2, ℋ♯
2, 𝑜, 𝑣𝑎𝑙, 𝑎𝑑𝑑𝑟, 𝑟𝑣𝑎𝑙)

case otherwise → <Execution Halt>

Figure 3.8: Excerpt of small-step abstract semantics for Python.

In the process of defining the new semantics, we can notice that the number of <Execution Halt>
expressions have reduced. Every <Execution Halt> that is not the result of a parser error is caused by a
type mismatch between values being operated. An example of an execution halt caused by a type mismatch
is 5 + None because no integer can be added to a None .

Executing a faulty piece of code now does not halt the interpreter:

1 b = 2 + d
2 if b < 3:
3 a = 2+3
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4 else:
5 a = 5-1+1

The state result of evaluating the function 𝕊♯J𝑏 = 2 + 𝑑; 𝑎 = 𝑏 < 3)K is:

𝒢♯(𝑖) =

⎧{{
⎨{{⎩

0 if 𝑖 = ’d’
1 if 𝑖 = ’b’
2 if 𝑖 = ’a’
Undefined otherwise

ℋ♯(𝑛) =

⎧{{
⎨{{⎩

⊤Val if 𝑛 = 0
⊤Val if 𝑛 = 1
5 if 𝑛 = 2
Undefined otherwise

3.4 NdArrays

The purpose of the specification is to be able to construct from it an Abstract Interpreter. To test the Abstract
Interpreter abilities to find bugs it should be able to handle NumPy array (tensors). In this section, I extend
the concrete semantics with NumPy arrays.

The following are all the things to take into account when extending our specification to handle a new
type of “built-in” Object type:

1. Extend the types of Objects to handle NumPy arrays.

Type ∶= List | Tuple | Module | NdArray

As an example, consider the numpy array np.zeros((4, 3)) , it can be expressed as:

(NdArray, 𝑛, 𝑠)

where 𝑛 ∈ ℤ, and

𝑠(𝑖) =
⎧{
⎨{⎩

𝑛 + 1 if 𝑖 = ’shape’
𝑛 + 5 + 𝑚 + 3𝑜 if 𝑖 = (’index’, 𝑚, 𝑜) ∀𝑚 ∈ [0, 3], 𝑜 ∈ [0, 2]
Undefined otherwise

𝑡(𝑖) =

⎧{{
⎨{{⎩

𝑛 + 2 if 𝑖 = ’size’
𝑛 + 3 if 𝑖 = (’index’, 0)
𝑛 + 4 if 𝑖 = (’index’, 1)
Undefined otherwise

ℋ(𝑚) =

⎧
{{{{
⎨
{{{{
⎩

(NdArray, 𝑛, 𝑠) if 𝑚 = 𝑛
(Tuple, 𝑛 + 1, 𝑡) if 𝑚 = 𝑛 + 1
2 if 𝑚 = 𝑛 + 2
4 if 𝑚 = 𝑛 + 3
3 if 𝑚 = 𝑛 + 4
0 if 𝑚 = 𝑛 + 5 + 𝑜 ∀𝑜 ∈ [0, 11]
Undefined otherwise

Note: Remember that anObject♯ is a triple of the form Type×Addr×(Key → Addr ∪ {Undefined}).
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2. Extend primitive functions with NumPy’s primitive functions. The NumPy’s primitive functions
implemented in the Abstract Interpreter are: array , zeros , dot , ones , abs (and all other
functions that don’t alter the shape of the tensor they take), arange , size , ndim , astype , and T .

<prim-callable> = ⋯ (old operations) | <prim-np-zeros> | <prim-np-dot> | <prim-np-abs> | ⋯

Note: The values stored inside a NumPy array are considered irrelevant in this work. The Value
Analysis built in this work considers only the shape of tensors, as tensors can be huge and their contents
do not often influence their shape. Therefore, it would be wasteful to give a detailed specification of
the NumPy library primitives.

Nonetheless, defining formally each one of the NumPy functions above is fairly straightforward.
Although, the hardest part of a formal definition of NumPy arrays is detailing how array works. To
define the function <np-array> one must consider the many input cases it can handle, and it can
handle almost any Python object1.

Once the <np-array> function is implemented all other functions are much simpler to define. As an
example, the implementation of the function size is:

<prim-np-size> (𝒢♯, ℋ♯) ∶=
let (𝒢♯

1, ℋ♯
1, (NdArray, 𝑎𝑑𝑑𝑟, 𝑎𝑟𝑟)) ∶= <prim-array> (𝑣𝑎𝑙) (𝒢♯, ℋ♯)

(Tuple, 𝑎𝑑𝑑𝑟𝑡𝑢𝑝, 𝑡𝑢𝑝) ∶= 𝑎𝑟𝑟(’shape’)
in 𝑡𝑢𝑝(’size’)

3. The NumPy module holding all operations is defined:

<numpy-mod> ∶= (Module, −1, 𝑓numpy)

where −1 indicates that the address is to be set only when the module is imported, and

𝑓numpy(𝑠) =

⎧
{{{
⎨
{{{
⎩

<prim-array> if 𝑠 = (’attr’, ’array’)
<prim-dot> if 𝑠 = (’attr’, ’dot’)
<prim-zeros> if 𝑠 = (’attr’, ’zeros’)
<prim-ones> if 𝑠 = (’attr’, ’ones’)
…
Undefined otherwise

4. And finally, S[Import(name)] is extended (now it handles a single library):

1The NumPy function array takes almost anything as an input. array tries to interpret its input as an array in any way it
can. There is no formal definition of how the values are interpreted although its semantics can be extracted by looking at its C
implementation: https://stackoverflow.com/a/40380014

https://stackoverflow.com/a/40380014
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𝕊♯JImport(𝑛𝑎𝑚𝑒)K (𝒢♯, ℋ♯) ∶=
match 𝑛𝑎𝑚𝑒 in
case (”numpy”, ) →

let (Module, 𝑎𝑟𝑟, 𝑚𝑜𝑑) ∶=< 𝑛𝑢𝑚𝑝𝑦 − 𝑚𝑜𝑑 >
𝑓𝑟𝑒𝑒𝑎𝑑𝑑𝑟 ∶= 𝑔𝑒𝑡_𝑓𝑟𝑒𝑒_𝑎𝑑𝑑𝑟(ℋ♯)

in (𝒢♯[’numpy’ ↦ 𝑓𝑟𝑒𝑒𝑎𝑑𝑑𝑟], ℋ♯ [𝑓𝑟𝑒𝑒𝑎𝑑𝑑𝑟 ↦ (Module, 𝑓𝑟𝑒𝑒𝑎𝑑𝑑𝑟, 𝑚𝑜𝑑)])
case (”numpy”, 𝑎𝑙𝑖𝑎𝑠) →

let (Module, 𝑎𝑟𝑟, 𝑚𝑜𝑑) ∶=< 𝑛𝑢𝑚𝑝𝑦 − 𝑚𝑜𝑑 >
𝑓𝑟𝑒𝑒𝑎𝑑𝑑𝑟 ∶= 𝑔𝑒𝑡_𝑓𝑟𝑒𝑒_𝑎𝑑𝑑𝑟(ℋ♯)

in (𝒢♯[𝑎𝑙𝑖𝑎𝑠 ↦ 𝑓𝑟𝑒𝑒𝑎𝑑𝑑𝑟], ℋ♯ [𝑓𝑟𝑒𝑒𝑎𝑑𝑑𝑟 ↦ (Module, 𝑓𝑟𝑒𝑒𝑎𝑑𝑑𝑟, 𝑚𝑜𝑑)])

3.5 Type Annotations

Notice that we have not yet talked about the abstract semantics of AnnAssign. The idea of type annotations
is that they let us refine the value/type of a variable when the Abstract Interpreter is unable to define a
precise value.

An example of what annotations should be able to do is:

1 from mypreciouslib import amatrix
2 from pytropos.hints.numpy import NdArray
3
4 mat: NdArray[1,12,6,7] = np.array(amatrix)
5 newmat = (mat + 12).reshape((12*6, -1)) # newmat has shape (12*6,7)
6 newmat = newmat.dot(np.ones((8, 21))) # Error! Matrix multiplication, 7!=8

When one imports an arbitrary library like mypreciouslib it is impossible to know what we may have
imported so every variable imported is a ⊤Val, i.e. anything. By adding an annotation to mat , we are telling
the abstract interpreter that we know, and are sure, of the shape of the NumPy array.

The semantics for AnnAssign are:

𝕊JAnnAssign(𝑣𝑎𝑟, ℎ𝑖𝑛𝑡, 𝑣𝑎𝑙)K (𝒢, ℋ) ∶=
let (𝒢1, ℋ1, 𝑎𝑠𝑠) ∶= 𝔼J𝑣𝑎𝑟K (𝒢, ℋ)

(𝒢2, ℋ2, 𝑟𝑖𝑔ℎ𝑡𝑣𝑎𝑙) ∶= 𝔼J𝑣𝑎𝑙K (𝒢1, ℋ1)
𝑐𝑜𝑚𝑝𝑣𝑎𝑙 ∶= if 𝑖𝑠_𝑣𝑎𝑙𝑢𝑒(𝑟𝑖𝑔ℎ𝑡𝑣𝑎𝑙) then 𝑣𝑎𝑙 else <Execution Halt>
(𝒢3, ℋ3, ℎ𝑖𝑛𝑡𝑒𝑣𝑎𝑙𝑒𝑑) ∶= 𝔼Jℎ𝑖𝑛𝑡K (𝒢2, ℋ2)
ℎ𝑖𝑛𝑡𝑣𝑎𝑙 ∶= if 𝑖𝑠_𝑣𝑎𝑙𝑢𝑒(𝑟𝑖𝑔ℎ𝑡𝑣𝑎𝑙) then 𝑣𝑎𝑙 else <Execution Halt>

𝑟𝑣𝑎𝑙 ∶= if ℎ𝑖𝑛𝑡𝑣𝑎𝑙 < 𝑐𝑜𝑚𝑝𝑣𝑎𝑙 then ℎ𝑖𝑛𝑡𝑣𝑎𝑙 else 𝑐𝑜𝑚𝑝𝑣𝑎𝑙
in match 𝑎𝑠𝑠 in

case 𝑖𝑑 ∶ Val → (𝒢3[𝑎𝑠𝑠 ↦ 𝑟𝑣𝑎𝑙], ℋ3)
case ((𝑡, 𝑎𝑑𝑑𝑟, 𝑜) ∶ Object, (’index’, 𝑣𝑎𝑙 ∶ Val)) →

let 𝑠𝑒𝑡𝑖𝑛𝑑𝑒𝑥 ∶= 𝑔𝑒𝑡_𝑝𝑟𝑖𝑚_𝑠𝑒𝑡_𝑖𝑛𝑑𝑒𝑥(𝑡)
in 𝑠𝑒𝑡𝑖𝑛𝑑𝑒𝑥 (𝒢3, ℋ3, 𝑜, 𝑣𝑎𝑙, 𝑎𝑑𝑑𝑟, 𝑟𝑣𝑎𝑙)

case otherwise → <Execution Halt>
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Notice that we determine the “precision” of a hint with respect to the variable with the comparison
between values, the order operation for the Abstract Domain Val♯!

Further details on the concrete and abstract semantics are given in Appendix A.
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Chapter 4

Pytropos (Analysis Implementation)

Pytropos12 is the Abstract Interpreter implemented in this work. The interpreter follows the rules exposed
in the previous chapter.

We explore how is Pytropos built, a brief history and some internal details.

4.1 The big picture

Figure 4.1: Up: black box step by step of executing a piece of code in Python (CPython).
Down: Pytropos extension of Python. Pytropos transforms the code prior to run it by CPython.

The transformation wraps the code to be run with the help of a custom library.

Pytropos works in a similar way as any other Python interpreter does. Pytropos reads code and executes
it sentence by sentence. Its main difference to CPython is that it does not transform code into bytecode but it

1There is an old trend where programs, companies and anything that could be named was named after some mythological
creature from an ancient civilization. Thus, why could not this work also have a proper ancient-based name. Pytropos comes from
the merge of Python and Atropos. In Greek mythology, Atropos was one of the three goddesses of fate who decided on the lives of
humans, she was the goddess of death and the one who cut the thread of life.

2Homepage: https://github.com/helq/pytropos

https://github.com/helq/pytropos
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wraps the code before it is transformed into CPython bytecode. The code is wrapped to use a library that
implements the semantics of the Abstract Interpreter. See Figure 4.1.

Similar to how Python works, Pytropos not only “runs” individual files but also offers a REPL (Read-
eval-print loop) to check small portions of code.

4.2 Wrapped code + libs + interpreter vs. from scratch interpreter

The traditional methodology to build an interpreter is to code the parser and the semantics of the language in
one big program. For a language like Python, building an interpreter from scratchwould require considerable
effort given the large amount of characteristics Python comes with. A “complete” Python implementation
would require to implement–among other things–memory management, garbage collection, function calling
and return, dynamic type analysis, exception handling.

Ortin, Perez-Schofield, and Redondo (2015) showed how to build a Static Type Analysis by means of
rewriting the code to operate with the types of values rather than with the values themselves, i.e. the result
of executing the code is not some values but some types. For example, consider the following small piece of
code:

1 a = 2 + 4
2 b = a + ”yep” # this will fail
3 c = a / 2

Notice how even though the piece of code fails to run successfully, we can determine the types of all
variables. a has type int , b has no type as it cannot be computed, and c has type float because the
division of int s in Python 3 gives us back a float .

We can build a library that operates on types (rather than values) and then we can rewrite the piece of
code above into:

1 import typeops as to
2 a = to.add(int, int)
3 b = to.add(a, str)
4 c = to.div(a, int)

If the library has properly defined the methods add and div , we can be sure that the code will run
without any error. Notice that the library is able to find type mismatches by embedding checks in the
functions add and div . The library can, effectively, perform Static Type Analysis on a piece of code.

Pytropos is implemented following the same strategy: a library that operates over abstract values, and a
transformation procedure that takes the code and wraps it to use the library. The final step is to run the
wrapped code and collect the generated errors3.

The main advantage of translating code into wrapped code is the reuse of infrastructure. One does not
need towrite all the infrastructure that an interpreter needs. Pytropos does not implement its own call system,
heap management or garbage collection. All of it is managed by the underlying Python implementation
where the code is executed.

3This strategy has been applied in the past for similar purposes, mainly to reuse infrastructure. It was used by Lauko, Ročkai,
and Barnat (2018) for symbolic computation of LLVM bytecode.
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Nevertheless, this approach has three main disadvantages. First, all operations, function calls, attribute
access, subscript access and the whole Python semantics, must be coded into the library and in the trans-
formation function. Second, the place where any operation has occurred must be preserved too, otherwise,
it is impossible to find where an error has occurred. Finally, all variable accesses must also be wrapped,
otherwise the execution would stop if one finds an undefined variable. Because of all of this wrapping, the
transformation does not produce a simple, human-readable output.

To show, how currently Pytropos wraps and transforms the code consider the code below from the piece
of code above:

1 import pytropos.internals as pt
2 st = pt.Store()
3 pt.loadBuiltinFuncs(st)
4 fn = 'test.py'
5 st[('a', ((1, 0), fn))] = pt.int(2).add(pt.int(4), pos=((1, 4), fn))
6 st[('b', ((2, 0), fn))] = st[('a', ((2, 4), fn))].add(pt.str('yep'), pos=((2, 4), fn))
7 st[('c', ((3, 0), fn))] = st[('a', ((3, 4), fn))].truediv(pt.int(2), pos=((3, 4), fn))

Not as nice as the first example.
Pytropos started out from the same idea as Ortin et al. (2015) but it differs on its principal goal. Pytropos

goal was not to perform Static Type Analysis but Static Value Analysis. After working for three months on a
prototype, it became blatantly clear that trying to wrap the code naïvely did not work very well, i.e. the code
was a hacky and not very resilient. The library and transformation needed to be based on a solid theoretical
framework.

Enter Abstract Interpretation. Abstract Interpretation offers the ideal framework for Static Value Analysis,
it is well understood, with solid theory and extensive work on it has been done for the last four decades.

Ortin et al. (2015) strategy alone may still be a good idea for Static Type Analysis, but it may not work
without a framework to glue together the semantics of the language with those of the analysis. Their legacy
to Pytropos is the reuse of Python infrastructure by wrapping the code and not building an interpreter from
scratch.

4.3 Assumptions

Pytropos is limited to work only with Python 3.6 or higher. Pytropos uses variable annotations to allow
the user to specify the shape of NumPy arrays when Pytropos is not able to “infer” their value. Variable
annotations were introduced on Python 3.6 (Ryan Gonzalez et al., 2016).

The goal of Pytropos is to warn the user when an operation will fail at runtime. It is not a goal of
Pytropos to verify the code and prove its correctness (Pytropos is not a tool for verification).

Pytropos goal is not to replace MyPy, flake8, or any other static analysis Python tool4. Pytropos is meant
to be an aid for developers when working with tensors.

Based on that, I present the main assumptions taken into account at the design stage of Pytropos:

• The user wants as little warnings on the code as possible. Pytropos should warn the user for errors it
is sure will occur at runtime.

• The user cares only about the shape of tensors and not about their actual content.
4I use MyPy and flake8 in every project and I am thankful for the years of effort put into these amazing tools. Thank you, guys!
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• If Pytropos is not able to infer the value of a variable, the user can (optionally) annotate the type/value
of the variable. If the annotation is not more precise than the value that Pytropos has already inferred
the inferred value will not be changed.

4.4 Details about the guts

To start with, I do not follow the structure defined in the previous chapter for how elements are saved in
memory. I did not explicitly defined a Heap (ℋ♯) but rather, I make use of Python’s heap. The main reason
to not define a custom Heap is the cost associated to it, especially the definition of a Garbage Collector.
The classes AbstractMutVal and Store , the implementations of Object♯ and 𝒢♯, respectively, do not
point to Addr♯s but they point to PythonValue s directly (again, because CPython manages the heap
not Pytropos). The global scope, Store , is an object that takes a str and returns a PythonValue . An
Object♯, AbstractMutVal , is an object that has an associated type and operations, and it can point to any
PythonValue .

The class PythonValue implements the Val♯ Abstract Domain. A PythonValue is a wrapper around
either an AbstractValue or an AbstractMutVal (the implementations of PrimVal♯ and Object♯). Note
that AbstractMutVal subclasses AbstractValue , as well as do Int , Float , NoneType and Bool

which implement Int♯, Float♯, None♯ and Bool♯, respectively.
AbstractValue is an abstract class that defines all the operations supported ( + , * , …) by Pytropos,

and what it is required for a function call, subscript access and attribute access. AbstractValue , in its turn,
subclasses AbstractDomain an abstract class that defines the methods every Abstract Domain should have,
namely is_top() , join() , top() and widen_op() . PythonValue and Store , unsurprisingly, also
subclass AbstractDomain .

Figure 4.2 presents the class diagram showing the relationships between the different components in
Pytropos.

<prim-callable> and all other Object♯s are implemented by a subclass of AbstractMutVal : <prim-
callable> by BuiltinFun , Module objects by BuiltinModule , list s by List, and tuple by Tuple.

The implementation of the Abstract Interpreter also includes a class log that stores all warnings generated
in the abstract interpretation of the code.
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AbstractDomain

is_top()
join()
narrow_op()
top()
widen_op()

AbstractMutVal

children
mut_id

convert_into_top()
copy_mut()
get_attrs()
join()
join_mut()
new_vals_to_top()

AbstractValue

abstract_repr
op_add
op_floordiv
op_ge
op_gt
op_le
op_lshift
op_lt
op_mod
op_mul
op_rshift
op_sub
op_truediv
type_name

call_getitem()
call_setitem()
fun_call()
get_attrs()
get_subscripts()
join()
op_OP()
op_bool()
widen_op()

Bool

abstract_repr
type_name
val

is_top()
join()
op_bool()
top()

BuiltinFun

abstract_repr
args
fun
is_method : bool
kargs
name
type_name

copy_mut()
fun_call()
get_attrs()
is_top()
join_mut()
top()

BuiltinModule

abstract_repr
mod_name
read_only : bool
type_name

copy_mut()
is_top()
join_mut()
top()

Float

abstract_repr
type_name
val

is_top()
join()
op_bool()
top()

Int

abstract_repr
type_name
val

is_top()
join()
op_bool()
top()

List

abstract_repr
size : tuple
type_name

get_attrs()
get_subscripts()

TupleOrList

size, tuple

check_index()
convert_into_top()
copy_mut()
is_size_determined()
is_top()
join_mut()
sorted_indices()
sorted_indices_ints()
top()

NdArray

abstract_repr
children : dict
shape
type_name

copy_mut()
get_attrs()
is_top()
join_mut()
op_OP()
op_OP_Any()
top()

NoneType

abstract_repr
type_name

is_top()
join()
op_bool()
top()

PythonValue

attr
mut_id
val

bool()
call()
convert_into_top()
copy_mut()
is_mut()
is_top()
join()
join_mut()
new_vals_to_top()
operate()
subs()
top()
type()
widen_op()

Store

copy()
importStar()
is_top()
items()
join()
top()
widen_op()

Tuple

abstract_repr
size : tuple
type_name

fromList()
get_attrs()
get_subscripts()

Figure 4.2: Class diagram for Pytropos, the implementation of the Abstract Interpreter.
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Chapter 5

Validation and Discussion

In this chapter, we explore the capabilities of Pytropos, the implementation of the proposed abstract inter-
preter. The chapter is divided into two parts: how was the code tested and a discussion on the results of the
tests.

5.1 Validation

We created two types of tests: unit regression tests and property-based tests. Unit tests fulfil two purposes:
they are a guide of what the abstract interpreter should do and they act as regression checks to prevent
reintroducing bugs. Slightly more challenging to write are property-based tests. They allow us to make sure
that Pytropos complies to the specification and to CPython behaviour.

Comparing against the official regression battery of tests for CPython is left for future work as the
abstract interpreter still is not ripe enough. The abstract interpreter is still missing a great number of built-in
functions and classes.

5.1.1 Unit Tests

There are a total of 74 unit tests checking various parts of the Abstract Interpreter. The tests can be categorised
into:

• if branching
• while looping
• list s and tuple s
• NumPy array operations
• Type annotations
• Miscellaneous

Table 5.1 shows the results of evaluating in Pytropos all unit tests. There are three cases for the evaluation
of a unit test:

• 4: The test ran as it was expected, i.e. Pytropos catch all expected errors and computed all values
correctly.

• 8: The test did not run as expected, i.e. Pytropos did not catch all expected errors or computed some
value incorrectly.

• :: It was not possible to run the test because some method, function, or operation has not yet been
implemented.

The tests check not only for what Pytropos is able to check now but what it should be able if implemented
the whole semantics described in Appendix A.
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Table 5.1: Unit test coverage on the different capabilities of the abstract interpreter. 4 indicates
the number of tests that passed as expected. 8 indicates the number of tests that failed to
run as expected. : indicates the number of tests that failed to run due to an incomplete

implementation.

Category Total lines Tests 4 8 : Total coverage

if branching 133 16 14 2 0 87.5%
while looping 99 11 10 0 1 90.9%
list s and tuple s 74 11 9 1 1 81.8%
NumPy array operations 315 25 20 3 2 80%
Type annotations 26 4 1 0 3 25%
Miscellaneous 32 7 5 0 2 71.4%

As it can be seen in Table 5.1, Pytropos passes most tests as expected, i.e. Pytropos conforms to our
definition of the Abstract Interpreter catching all expected errors and calculating correctly the values
of the variables. The tests that Pytropos does not pass are due to subtle semantic rules that have not
yet been implemented or a lack in the support of built-in values. Pytropos errors come from too much
overapproximation and never as a result of an underapproximation.

5.1.2 Property-based Tests

Property-based testing consists in writing a property that a piece of code should fulfil. For example, a
property of lists is that adding a new element to a list of size n gives back a list of size n+1 . Property-based
testing tools try to find a counterexample for a given property. We use property-based testing to check for
compliance of built-in operations in Pytropos against CPython.

There are a total of 20 property-based tests. We use Hypothesis1 to find counterexamples. For each test,
Hypothesis generates 100 inputs following a predefined strategy which looks for common inputs that tend
to break code and random inputs. Property-based testing proved to be extremely helpful at the initial stages
of Pytropos development, as Hypothesis was able to show several weak spots in the implementation.

Many operations between Python values throw exceptions, e.g. 3 / 0 throws a zero-division exception.
Some of the values that trigger exceptions should be known to every programmer, but others have been
quite surprising as they have appeared. Thanks to Property-based tests, Pytropos primitive values have
been extensively tested. The following are some of the exceptions that Hypothesis helped us find:

• Zero-division exception on expressions like 5 % 0 or 5 % False
• Value exception on expressions like 5 « -2
• Excessive High-memory consumption on expressions like 5 « 10**10
• Overflow exception on expressions like 10**209 + 2.0

5.2 Discussion

In this section, we will show some positive and negative unit tests. Through them, we will explain what is
Pytropos capable of doing and when does it fail.

1Hypothesis is a testing tool designed to strategically generate input examples in an attempt to disprove a property about the
code. Tests in Hypothesis are properties of what the developer thinks the code should do. Homepage: https://hypothesis.works

https://hypothesis.works
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5.2.1 Pytropos capabilities

The following are some tests where Pytropos runs as expected and it is able to compute all values correctly:

• Pytropos is able to join two states with primitive variables properly:

1 a = 5
2
3 if True:
4 c = 2
5 else:
6 c = 2.0
7
8 d += 1

1 a = 5
2
3 if False:
4 c = 2
5 else:
6 c = 2.0
7
8 d += 1

1 a = 5
2
3 if d:
4 c = 2
5 else:
6 c = 2.0
7
8 d += 1

In the first two examples, Pytropos selects correctly which branch to execute and warns the user of
the use of an undeclared variable, d . All undeclared variables are set by default to Undefined . If
an undeclared variable is used, it is set to ⊤Val.
In the third example, Pytropos warns the user of the undeclared use of the variable d and chooses to
execute both branches separately with a copy each of the state of the program. The new state of the
program is the result of joining the two final states of running each branch.
The final states for the examples are:

’a’ ↦ 5
’c’ ↦ 2
’d’ ↦ ⊤Val

_ ↦ Undefined

’a’ ↦ 5
’c’ ↦ 2.0
’d’ ↦ ⊤Val

_ ↦ Undefined

’a’ ↦ 5
’c’ ↦ ⊤PrimVal

’d’ ↦ ⊤Val

_ ↦ Undefined

• Pytropos can join two states with non-primitive values, e.g. lists.

1 from importantlib import either
2
3 either: int = either
4
5 a = [1]
6 a[0] = a
7
8 if either > 20:
9 a.append(2)

10 else:
11 a.append(3)
12 a[1] -= 1

Operating with a variable imported from a library is the same as to work with an undefined variable.
The imported variable either is set to ⊤Val.
The type annotation on either: int = either tells Pytropos that either is an int value. The
result of computing the expression either > 20 is ⊤Bool not a ⊤Val. Even though ⊤Bool is more precise
than ⊤Val (⊤Bool < ⊤Val), it is not precise enough to tell us which branch will be executed (⊤Bool tells us
that the variable may either be True or False ). Thus, both branches must be executed and joined.
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a contains two elements after running a.append(2) : a reference to itself and the integer 2. And a

contains two elements after running a.append(3); a[1] -= 1 : a reference to itself and the integer
2. Both states are the same, therefore their joined state is the same.
The final state of the program is:

𝒢(𝑖) =
⎧{
⎨{⎩

0 if 𝑖 = ’either’
1 if 𝑖 = ’a’
Undefined otherwise

𝑙(𝑖) =

⎧{{
⎨{{⎩

2 if 𝑖 = ’size’
1 if 𝑖 = (’index’, 0)
3 if 𝑖 = (’index’, 1)
Undefined otherwise

ℋ(𝑛) =

⎧
{
{
⎨
{
{
⎩

⊤Int if 𝑛 = 0
(List, 1, 𝑙) if 𝑛 = 1
2 if 𝑛 = 2
2 if 𝑛 = 3
Undefined otherwise

• Pytropos can apply the widen operator after trying to run a piece of code a couple of times.

1 i = 0
2 j = 0
3
4 while i < 10:
5 j += i
6 i += 1

1 i = 0
2 j = 0
3
4 while True:
5 j += i
6 i += 1

1 i = 0
2 j = 0
3
4 while i < n:
5 j += i
6 i += 1

Anytime Pytropos is asked to execute a loop, it tries to run the loop like any other interpreter, i.e.
Pytropos will run the body of the loop until the condition becomes false. For example, in the first piece
of code the condition i < 10 becomes false after 10 iterations, and the final state of the program is
reached ( i and j have values 10 and 45, respectively).
To prevent Pytropos from running forever any loop is stopped after a set number of iterations and it
assumed that the truth value cannot be determined. If it is not possible to determine the truth value
of the condition, Pytropos will loop once on a copy state and it will apply the widen operation on the
two states. Abstract Interpretation warranties that the repeated application of the widen operation on
an increasing sequence (loop application) will eventually stop and find a fix-point. The second and
third example arrive at the same state, i and j have the value ⊤Int, albeit after different executions
are made. In the second example, Pytropos executes the loop until it reaches the maximum number
of executions allowed, then it executes the body of the loop in a copy of the state and applies the
widening operator on the two states. In the third example, no execution prior to applying the widening
operation is performed as the truth value of i < n cannot be determined as n has not been defined.

• Pytropos is able to determine appropriately the shapes of NumPy arrays defined from lists, tuples
and NumPy arrays.

1 import numpy as np
2
3 m = n = _
4
5 _ = np.array(3).shape # must be ()
6 __ = np.array([3]).shape # must be (1,)
7 a = np.array([[2,3],[3,4,5]]).shape # must be (2,)
8 # show_store(a)
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9 b_ = np.array([[2,3,4],[3,4,5]]) # must be array(shape=(2,3))
10 b = b_.shape # must be (2,3)
11 c = np.array([[2,3],7]).shape # must be (2,)
12 d = np.array([[2,3,1],(2,2,2)]).shape # must be (2,3)
13 e = np.array([m,(2,2,2)]).shape # must be (2,...)
14 f = np.array([m,[1,2],(2,2,2)]).shape # must be (3,)
15 g = np.array([m,n]).shape # must be (2,...)
16 ls = [[1,2,3,4,5],[3,4,0,0,1]]
17 h = np.array([ls,ls,ls]).shape # must be (3, 2, 5)
18 i = np.array([ls,ls,n]).shape # must be (3, ...)
19 j = np.array([ls,[ls[0], m],n]).shape # must be (3, ...)
20 k = np.array([[ls,[ls[0], m],n]]).shape # must be (1, 3, ...)
21 l = np.array(b_).shape # must be (2,3)

This test case shows how Pytropos is able to calculate the correct shape for both: values that have a
determined shape like lists of numbers, and ⊤Val values which could have any shape.

• Pytropos detects correctly when an operation between two tensors is incorrect, and it can calculate
the correct resulting shapes of a successful operation application.

1 import numpy as np
2
3 a = (np.zeros( (2, 1, 4)) + np.zeros( (3,1)) ).shape # must be (2, 3, 4)
4 b = (np.zeros( (2, 2, 4)) + np.zeros( (3,1)) ).shape # broadcasting error
5 c = (np.zeros( (2, 2, 4)) - 3 ).shape # must be (2, 2, 4)
6 d = (np.zeros( (7, 1, 8)) / [7] ).shape # must be (7, 1, 8)
7 e = (np.zeros( (2, 2, 4)) * [7,3] ).shape # broadcasting error
8 f = ( ([2],[3],[6]) % np.ndarray( (5,1,1))).shape # must be (5, 3, 1)

Notice that Pytropos computes the shape of non-arrays like 3 or [7,3] because NumPy converts any
non-array into array before computing between them, e.g. the expression np.zeros((7, 1, 8)) / [7]

is the same as computing np.zeros((7, 1, 8)) / np.zeros((1,)) .
• Pytropos uses type annotations when it is not able to compute the shape of a tensor.

1 import numpy as np
2 import somelib
3
4 from pytropos.hints.numpy import NdArray
5
6 a: NdArray[2,3,4] = np.array(somelib.val) # a should be array(shape=(2,3,4))
7 b: NdArray[1,2] = somelib.numpyval() # b should be array(shape=(1,2))
8 c = [[6], [8]]
9 c = np.array(c) # c should be array(shape=(2,1))

10 d = b + c # d should be array(shape=(2,2))
11 e: NdArray[2, 5] = c # Error. e should be array(shape=(2,1))
12 f: NdArray[()] = np.array(2) # Everything ok. f is array(shape=())
13 g: NdArray[int,2] = somelib.numpyval() # g should be array(shape=(int?,2))
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14 h: NdArray[6,2] = np.array(g) # h should be array(shape=(6,2))
15 i: NdArray[10] = somelib.x() # i should be array(shape=(10,))

Type annotations can only improve the current computed value. If a faulty type annotation is given, Py-
troposwill signal the user. For example, the type annotation in the assignment e: NdArray[2, 5] = c

is incorrect as the shape of c is computed to be (2,1) but the annotation says (2,5) .

5.2.2 Pytropos failures

The following are all the tests where Pytropos does not work as intended. It either fails to compute the
values correctly or fails to run the code.

• Pytropos overapproximates some join operations between states. When Pytropos joins two states that
are not precisely equal, it may collapse a variable into a ⊤. This is not always as precise as one may
expect. For example, consider:

1 from somelib import either
2
3 if either:
4 a = []
5 b = a
6 else:
7 a = []
8 b = []

In the then branch a single list is created and both variables point to it. In the else branch two lists
are created, one for each variable. The state that better captures the join of both states is:

’a’ ↦ ⊤List

’b’ ↦ ⊤List

_ ↦ Undefined

But Pytropos calculates the slightly more general case:

’a’ ↦ ⊤Val

’b’ ↦ ⊤Val

_ ↦ Undefined

• Pytropos is not yet able to apply the widening operator on two states with non-primitive values.

1 from somewhere import something
2
3 a = []
4 a.append(3)
5 i = a[0]
6 while i < 10:
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7 if something:
8 a.append(i)
9 else:

10 a.append(i+1)

In the example, Pytropos runs the loop until it reaches the iteration limit. In which point, it runs the
loop one more time in a state copy and applies the widening operator on the states. Pytropos fails to
run any further as the widening operator has not yet been implemented for lists.

• Pytropos is in active development, thus it lacks support to many primitives.

1 import numpy as np
2 from pytropos.hints.numpy import NdArray
3 from something import Top
4
5 a: NdArray[3, float] = np.arange(Top).reshape((3, Top))

In the example, the expected result is a warning explaining that one of the dimensions of an array
cannot be a floating number. All dimensions of an array must be natural numbers. Pytropos flags the
code as faulty because float has not been defined.

5.2.3 Using Pytropos as a linter

Any time Pytropos detects an error in the interpretation, Pytropos logs the error in a structure to be later
printed out to the user.

Writing a plugin to integrate Pytropos to any IDE is straightforward. Pytropos outputs into console all
errors in a standard format. Pytropos outputs all warnings in the format:

file:col:line: ERRORCODE: Warning message

A plugin in vimscript was written for Pytropos to use Pytropos as a linter for the text editor (Neo)Vim.
As can be seen in Figure 5.1, the developer can get feedback on their code on real-time.

Figure 5.1: Example of a warning message displayed in (Neo)Vim as a result of checking the
code with Pytropos.

The required steps to use Pytropos as a linter in (Neo)Vim are:

• Install Pytropos and make sure it can be run from console.
• Install the plugin Neomake. Homepage: https://github.com/neomake/neomake.
• Tell Neomake how to interpret the Pytropos output by adding the following lines to the configuration

file .vimrc:

https://github.com/neomake/neomake
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function! PostProcessingPytropos(entry)
” Pytropos uses 0-indexed columns, and Neovim uses 1-indexed
let a:entry.col += 1

if a:entry.text =~# '^E' || a:entry.text =~# '^SyntaxError'
let a:entry.type = 'E'

elseif a:entry.text =~# '^W'
let a:entry.type = 'W'

elseif a:entry.text =~# '^F'
let a:entry.type = 'F'

else
let a:entry.type = 'A'

endif
endfunction

let g:neomake_python_pytropos_maker = {
\ 'exe': 'pytropos', ”Change if Pytropos is called differently on your machine
\ 'args': [],
\ 'errorformat':
\ '%f:%l:%c: %m',

\ 'postprocess': [
\ function('PostProcessingPytropos'),
\ ]

\ }

let g:neomake_python_enabled_makers += ['pytropos']

5.2.4 Summary

Pytropos is still at a very early stage of development. The repertoire of Python characteristics implemented
in it is still small: no support for for statement, custom classes and objects, exception handling and the
lack of built-in definitions. Nonetheless, Pytropos can check for errors on operations between tensors and
can be extended to work with more libraries.

Pytropos is able to check for the many common cases and mistakes that can be made when working
with tensors. It is able to calculate the shape of tensors in a variety of circumstances and can handle tricky or
complex methods as the function array from NumPy. The NumPy function array can evaluate almost
anything as an array. Pytropos is able to calculate correctly the value of primitive Python values like integers
and floats. It can join two values and states of appropriately. It is able to apply the widen operator in certain
conditions.
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Chapter 6

Related Work

A big, widely used, and mature language like Python has no lack of Static Analysis tools. A big, widely
used, and mature area like Machine Learning has no lack of people trying to build tools to make writing
code for them easier. In this chapter, a brief overview of the many Static Analysis tools developed for Python
code and the several approaches taken to solve the problem of tensor shapes are given.

6.1 Static Analysis in Python

In Table 6.1, a list of all analysis tools found in the literature and libraries is given. The usage of a tool refers
to how is the tool used by developers: embedded in the python interpreter, used as a linter, or as a library
that runs with the code to analyse. The Analysis base of a tool refers to which is the theory behind the tool,
how it works underneath.

Cannon (2005) was the first (to our knowledge) to try to statically infer and type check code in Python.
His idea was to infer variables’ types before executing the code and use this knowledge to speed up the
execution. He acknowledged that the nature of Python makes type inference to be too weak. Thus, the
complexity that the project brought did not improve performance in equal measure and his work was never
added to Python. This work was prior to Siek and Taha (2006) with Gradual Types, where the developer
can help the type checking algorithm to find and assert better types.

The goal of all linters is to aid the developer by flagging code as faulty. What means for a piece of code
to be faulty varies from tool to tool. Pep8 checks for syntactic deviations of the style guide, Pep 81. Pyflakes,
Pylint and PyChecker define a variety of checks for common scenarios where a piece of code is known to fail,
e.g. undefined variables. MyPy, PyType and Pyre focus on type checking optionally, type-annotated code.
Nagini focuses on verifying pieces of Python code using the mature Viper (Müller, Schwerhoff, & Summers,
2016) infrastructure. Pytropos objective is different from all the other available linters: Value Analysis.

Our work is closest to Fromherz et al. (2018) as they focus on Value Analysis as well. Fromherz et. al
focus is on building an Abstract Interpreter to verify Python code. Our focus is not in verification but in the
shape of Tensors. Their Abstract Interpreter incorporates more capabilities than we do: exception handling
and support for breaking flow instructions. Unfortunately, they have not yet made their implementation
public.

6.2 Tensor Shape Analysis

6.2.1 Solutions in other languages

We may think that if a type system is not expressive enough to capture the shape of tensors, then we should
just start writing code in a language which does. We may write code in a language like Haskell or even

1https://www.python.org/dev/peps/pep-0008/

https://www.python.org/dev/peps/pep-0008/
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C++, which have very strong and expressive type systems (it is possible in C++ to enforce the shape of the
tensors with the use of templates and constraints (C++20)).

In fact, solutions in other languages exist. For example, Chen (2017) type checks the shape of tensors
(operations) by restricting what can be constructed (via constraints in the types of objects and functions).
Chen’s solution uses the powerful type system of Scala (which runs over the JVM). Eaton (2006) does the
same, although in an old version of Haskell. Eaton’s encoding of tensor shapes is awkward because Haskell
did not have, at the time, support for natural numbers at the type level. Haskell also lacked on syntactic
sugar for type functions. Abe and Sumii (2015) implement type checking for matrices (aka, tensors) in
OCaml. The library detects the shape of the matrices at compile time. Rakić, Stričević, and Rakić (2012)
type check tensor shapes (they call them matrices) with templates in C++. Templates are only accessible at
compile time, thus the Rakić et al. library type checks at compile.

One recent effort to type check tensor shapes in Haskell is the library tensorflow-haskell-deptyped
written by Cruz-Camacho and Bowen (2018). The library is written as a wrapper around the library port of
TensorFlow for Haskell. tensorflow-haskell-deptyped enforces at the type level how and which results
an operation between compatible tensors are to be performed.

A different path, not yet explored, is to extend an existing type checking system, like MyPy, and extend
it with dependent types. Dependent types allow us to carry information from the term level to the type
level, i.e. we can encode information of our data (available only at runtime) into the type system. Over this
extended type system, we could implement some restrictions to the operations applied to different types
(this is, in fact, the strategy taken in the library tensorflow-haskell-deptyped).

6.2.2 Theoretical Solutions

The problem of mismatched shapes is not new, in fact, it is so common that it has appeared several times
with similar solutions (Arnold, Hölzl, Köksal, Bodík, & Sagiv, 2010; Griffioen, 2015; Rink, 2018; Slepak
et al., 2014; Trojahner & Grelck, 2009). All solutions, though, are theoretical, they propose type systems
which, if they were to be implemented, could warranty type safety, i.e. no mismatching of tensor shapes
could ever happen at runtime.

The following is a small discussion about the different solutions proposed to type check tensors found
in the literature2:

• Trojahner and Grelck (2009): A paper on type checking of arrays. They define all type restrictions
using dependent types (something that no other paper does). The special keyword of this work is
“array programming”.

• Arnold et al. (2010): A paper focused on type checking of sparse “matrix” operations. They define a
functional language that can be translated into a lower level language or machine code. They give a
complete formalization of the algorithms and proofs of correctness in Isabelle. The special keyword
of this work is “sparse matrix”.

• Griffioen (2015): A paper focused on type checking and inference of arrays in array programming
and vector spaces. They define a special type system in which tensors are first class citizens. The
algorithm used for type checking is “Unification” which allows them to infer the type shape of arrays.
The special keyword of this work is “array programming”.

2As a side note, it is interesting to notice how difficult is to communicate ideas in science. All the papers presented in this section
hope to solve the same (or similar) problem, but they do not reference each other, which means that none of them knew what the
others were doing. The principal reason for this, I think, it is because they all called the problem differently.



52 Chapter 6. Related Work

• Slepak et al. (2014): A paper that tries to formalise array-oriented programming languages and extend
them with unit-aware operations. Array-oriented programming languages are languages which base
all their computations in arrays (like Matlab), but they usually aren’t formalised. The types of arrays
not only carry information about their shape but also of the unit they carry. The special keywords of
this work are “array-oriented programming” and “unit-aware computation”.

• Rink (2018): In this paper, Rink formalises a type system to type check the shape of tensors and
defines a language to use with the type system. It is a custom type system which does not require
dependent types. The special keyword of this work is “tensor manipulation language”.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this work, we have presented the definition and implementation of an Abstract Interpreter for Python
focused on the analysis of tensor shapes.

We showed how can Abstract Interpretation be applied to a dynamically typed programming language
like Python with the goal of defining a Static Value Analysis. To make this possible, first, we specified
small-step (concrete) semantics for Python taking into account Python dynamically typed variables and
aliasing. To build the Abstract Interpreter we defined an apt Abstract Domain for all values in the language,
an Abstract Domain for a state of a program with aliasing, and abstract semantics. Our approach to build the
Abstract Interpreter is easily extendable to check for more than built-in values as we showed by extending
the syntax and semantics of Python to handle the shape of NumPy arrays (tensors). The Abstract Interpreter
is able to use type annotations from the user to get more precision on the values it is able to analyse.

We presented a working implementation of the Abstract Interpreter, Pytropos, which is able to analyse
the shape of tensors in a variety of scenarios. The interpreter can work as a linter for IDEs catching potential
errors as the developer codes.

In brief, the work done includes:

• A specification of a subset of Python 3.6 (Syntax and small-step semantics).
• An Abstract Domain for Python Values.
• An Abstract Domain for Python program states.
• The semantics of an Abstract Interpreter for Python.
• The implementation of the Abstract Interpreter, Pytropos1.
• An application for the Abstract Interpreter to statically analyse the shapes of tensors and tensor

operations.
• A series of tests showcasing the abilities of the Abstract Interpreter and its failures.
• A way for developers to annotate code to improve the accuracy of the Abstract Interpreter.

The presented Python formalisation is easily extendible to calculate the value of a library-defined class.
NumPy arrays were added to the formalisation to show how to analyse code the shape of tensors.

The abstract semantics, the semantics of the Abstract Interpreter, are easy to develop. It was shown how
to get from the concrete semantics (small-step semantics) to the abstract semantics.

Testing showed that the Pytropos, the implementation of the Abstract Interpreter, is able to check many
common shape mismatches. The biggest problem of the implementation is on the lack of support for built-in
functions and values.

1Available at: https://github.com/helq/pytropos

https://github.com/helq/pytropos
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When the Abstract Interpreter cannot compute the correct tensor shape, the user may help the Abstract
Interpreter with Type Annotations. If the user gives a type annotation that does not improve the precision of
the computed value, the interpreter will warn the user of his mistake.

7.2 Future Work

Python is a huge and rich language. The amount of characteristics that Python has exceeds by far what a
single human can implement in the span of a master thesis.

Much work is left to improve Pytropos so that it can be used by the regular developer. We propose the
following roadmap to continue building the Abstract Interpreter:

• Extend Pytropos to include Exception handling. A similar approach to that of Fromherz et al. (2018)
could be a good starting point.

• Improve how copying and joining stores (states of the program) are done. The join operation between
stores is very, very costly. Walking through the graphs becomes prohibitively expensive as the program
to analyse grows in number of if and while sentences. This associated cost could be reduced if
only “diff”s of stores were used. One way to do this is by using immutable structures for all values in
the implementation. Using immutable structures would require the explicit implementation of the
heap and garbage collector.

• Extend Pytropos to handle breaking control statements ( continue , break and return ). Fromherz
et al. (2018) also present a way to handle breaking control statement in Python.

• Extend the global scope to handle local and non-local scopes. The scope rules of Python are mildly
complex with four different variable scopes: global, local, nonlocal, and class. Something to take into
account is the ability of CPython to statically analyse the use of local and non-local variables before
interpreting the code.

• Extend Val♯ with user-defined functions and objects. Once the interpreter handles user-defined
functions properly, extending the interpreter to work with user-defined objects is not a big problem.
The biggest difficulty with objects is implementing the MRO rules in charge of how to inheritance
work in Python.

Besides what is left to do to make Pytropos more powerful, there are some tasks related to the formality
of the work. This work presented some concrete and abstract semantics for Python but there was never a
proof of their correctness. We consider the following to be the problems to solve to prove the formalisation
correct:

• Give a complete and through formal definition for a subset of Python in a proof-assistant language
such as Agda, Idris, Coq, and Isabelle/HOL.

• Define in the same proof-assistance language the Abstract Domain, the properties it must follow, and
the abstract semantics.

• Prove that the abstract semantics are in fact consistent with the concrete semantics and abstract domain.
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Appendix A

Python Static Analysis based on Abstract
Interpretation

This appendix is divided into two parts: first, we present a reduced set of the Python syntax together with a
(partial) operational semantics; second, we show the use of the formal semantic definition to define the
abstract interpretation solution we implemented.

This chapter is meant to explain the theory behind the Abstract Interpreter implemented. In Chapter 4
an explanation on the implementation details is given.

A.1 Python (reduced) syntax and semantics

Python has no official small-step (formal) semantics. The Python Software Foundation defines a Reference
Manual for the language (Foundation, 2019), but they are explicit that the manual does not define a
full specification for the language. Quote: “… if you were coming from Mars and tried to re-implement
Python from this document alone, you might have to guess things and in fact, you would probably end up
implementing quite a different language.”

There have been a couple of small-step semantics defined for Python (Politz et al., 2013; Fromherz et al.,
2018; Guth, 2013; Ranson et al., 2008). In this work, we define yet one more time small-step semantics for
Python. We decided to define our small-step semantics for Python because of our specific needs.

Our semantics definition resembles the most that of Fromherz et al. (2018). In fact, our definition is
loosely based on Fromherz et al. (2018). As Fromherzet. al, we define each expression and statement step as
a function from states to states of the program, but opposed to them we do not include exception handling
and control break statements. Our definition allows every single value in the language to be an object:
functions, attributes, subscripts, and primitive values are all objects just as in regular Python. The following
is valid in Python and in our definition:

1 a = []
2 b = a.append
3 b(3)
4 a.append(2.0)
5 print(a) # prints: [3, 2.0]

In this sense, our definition is closer to that of Politz et al. (2013), where they also show how their
semantics are able to handle similarly complex examples.
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A.1.1 (Reduced) Syntax

Our simplified version of Python syntax can be seen in Figure A.1. The AST representation of the Python
syntax can be seeing in Figure A.2.

𝑒𝑥𝑝𝑟 ∶= 𝑖 ∈ ℤ | 𝑗 ∈ float | True | False | None primitive values
| 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 variable name
| 𝑒𝑥𝑝𝑟 𝑜𝑝 𝑒𝑥𝑝𝑟 | 𝑒𝑥𝑝𝑟 𝑐𝑚𝑝𝑜𝑝 𝑒𝑥𝑝𝑟 binary operations
| 𝑒𝑥𝑝𝑟(𝑒𝑥𝑝𝑟 ∗ ) function call
| 𝑒𝑥𝑝𝑟.𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 attribute access
| 𝑒𝑥𝑝𝑟[𝑒𝑥𝑝𝑟] subscript access
| [𝑒𝑥𝑝𝑟 ∗ ] lists
| (𝑒𝑥𝑝𝑟 ∗ ) tuples

𝑠𝑡𝑚𝑡 ∶= del 𝑒𝑥𝑝𝑟 delete
| 𝑒𝑥𝑝𝑟 = 𝑒𝑥𝑝𝑟 assignment
| 𝑒𝑥𝑝𝑟 𝑜𝑝 = 𝑒𝑥𝑝𝑟 augmented assignment
| 𝑒𝑥𝑝𝑟: 𝑒𝑥𝑝𝑟 = 𝑒𝑥𝑝𝑟 type annotation
| while 𝑒𝑥𝑝𝑟: 𝑠𝑡𝑚𝑡+ loop
| if 𝑒𝑥𝑝𝑟: 𝑠𝑡𝑚𝑡+ else: 𝑠𝑡𝑚𝑡+ if-else
| import 𝑎𝑙𝑖𝑎𝑠+ | from 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 import 𝑎𝑙𝑖𝑎𝑠+ import library
| 𝑒𝑥𝑝𝑟

𝑜𝑝 ∶= + | - | * | / | % | ** | « | » | //
𝑐𝑚𝑝𝑜𝑝 ∶= < | <= | > | >=

𝑎𝑙𝑖𝑎𝑠 ∶= 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 | 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 as 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟

Figure A.1: Reduced Python syntax used throughout this work.

The syntax from Figure A.1 is a subset of the Python 3.6 syntax1. Note that CPython does not directly
interpret code written in this syntax. The usual steps of lexing and parsing into a more explicit representation
are necessary for a program to be executed by CPython. We will define the semantics of the language over
the parser syntax, see Figure A.2 and not over the aforementioned syntax. The reasoning behind this change
is due to the parser syntax readiness to be analysed opposed to the original syntax.

Code written in the subset of Python (Figure A.1) gets translated into the parser’s representation
(Figure A.2), over which we define the semantics of the language. We will no describe the process of
translation (parsing), but we will explore some examples to show why the parser’s syntax aids into the
definition of the small-step semantics:

• a + b gets translated into BinOp(Add, Name(a, Load), Name(b, Load)) . Notice the Load con-
text, it indicates that we want to get the value of the variable, not a reference to it.

• a = 3 gets translated into Assign(Name(a, Store), Int(3)) . Notice the Store context, it tells
us that we want to modify the variable a , i.e. we want a reference to the variable.

• del a gets translated into Delete(Name(a, Del)) . Notice the Del context, it tells us that we will
where the object location in the heap.

• a.b[3] + b.c gets translated into

1Modified from the Python 3.6 syntax found at https://github.com/python/typed_ast/blob/
89242344f18f94dc109823c0732325033264e22b/ast3/Parser/Python.asdl

https://github.com/python/typed_ast/blob/89242344f18f94dc109823c0732325033264e22b/ast3/Parser/Python.asdl
https://github.com/python/typed_ast/blob/89242344f18f94dc109823c0732325033264e22b/ast3/Parser/Python.asdl
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𝑒𝑥𝑝𝑟 ∶= Int(𝑖) for 𝑖 ∈ ℤ | Float(𝑗) for 𝑗 ∈ float
| True | False | None primitive values
| Name(𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟, 𝑒𝑥𝑝𝑟_𝑐𝑜𝑛𝑡𝑒𝑥𝑡) variable name
| BinOp(𝑜𝑝, 𝑒𝑥𝑝𝑟, 𝑒𝑥𝑝𝑟)
| Compare(𝑒𝑥𝑝𝑟, 𝑐𝑚𝑝𝑜𝑝, 𝑒𝑥𝑝𝑟) binary operations
| Call(𝑒𝑥𝑝𝑟, 𝑒𝑥𝑝𝑟 ∗ ) function call
| Attribute(𝑒𝑥𝑝𝑟, 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟) attribute access
| Subscript(𝑒𝑥𝑝𝑟, 𝑒𝑥𝑝𝑟, 𝑒𝑥𝑝𝑟_𝑐𝑜𝑛𝑡𝑒𝑥𝑡) subscript access
| List(𝑒𝑥𝑝𝑟 ∗ ) lists
| Tuple(𝑒𝑥𝑝𝑟 ∗ ) tuples

𝑠𝑡𝑚𝑡 ∶= Delete(𝑒𝑥𝑝𝑟) delete
| Assign(𝑒𝑥𝑝𝑟, 𝑒𝑥𝑝𝑟) assignment
| AugAssign(𝑒𝑥𝑝𝑟, 𝑜𝑝, 𝑒𝑥𝑝𝑟) augmented assignment
| AnnAssign(𝑒𝑥𝑝𝑟, 𝑒𝑥𝑝𝑟, 𝑒𝑥𝑝𝑟) type annotation
| While(𝑒𝑥𝑝𝑟, 𝑠𝑡𝑚𝑡+) loop
| If(𝑒𝑥𝑝𝑟, 𝑠𝑡𝑚𝑡+, 𝑠𝑡𝑚𝑡+) if
| Import(𝑎𝑙𝑖𝑎𝑠+) import library
| ImportFrom(𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟, 𝑎𝑙𝑖𝑎𝑠+) import from
| Expr(𝑒𝑥𝑝𝑟)

𝑒𝑥𝑝𝑟_𝑐𝑜𝑛𝑡𝑒𝑥𝑡 ∶= Load | Store | Del
𝑜𝑝 ∶= Add | Sub | Mult | Div | Mod | Pow

| LShift | RShift | FloorDiv
𝑐𝑚𝑝𝑜𝑝 ∶= Lt | LtE | Gt | GtE

𝑎𝑙𝑖𝑎𝑠 ∶= 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 | (𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟, 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟)

Figure A.2: Python syntax used to define the semantics of the Abstract Interpreter.
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1 BinOp(Add,
2 Subscript(Attribute(Name(a, Load), b), Int(3), Load),
3 Attribute(Name(b, Load), c)
4 )

• a.b[3] = 3 gets translated into

1 Assign(
2 Subscript(Attribute(Name(a, Load), b), Int(3), Store),
3 Int(3)
4 )

Notice how we only get the Store context for the subscript and not for anything else, as we only
want to know where the value of the subscript is stored.

• del a.b[3] gets translated into

1 Delete(
2 Subscript(Attribute(Name(a, Load), b), Int(3), Del)
3 )

Notice how we only get the Del context for the subscript and not for anything else, as we only want
where and who belongs to the subscript.

The semantics of a del sentence require us to know where the identifier or attribute is located (in an
object or the store). Assigning a variable requires us to know where to put a variable. Accessing to inexistent
attribute ( class A(): ...; a = A(); a.length # error: attribute unknown ) is not the same as to
defining a new attribute ( class A(): ...; a = A(); a.length = 3 # works! ), thus we need a way
to distinguish between these three different statement-dependent expressions.

Despite the inability to define a custom function or class in the language, we want to be able to call a
function and access to objects attributes. That is why we have added them into the syntax to handle.

We have found that even though the amount of characteristics we support is small, we are able to capture
some common errors caused when coding (e.g. 5 % 0 fails and we can capture it).

A.1.2 Python (reduced) small step semantics

For us, there are two types of Python values:

• Primitive values,PrimVal, which include integers ( int s), Floating point numbers ( float s), Boolean
values ( True and False ), and the lonely None value.

• Mutable values, Object. An Object is a value that holds a type, an address to where it is located, and
a “dictionary” pointing to other values.

• Functions: <prim-callable> andAddr×<prim-callable>. Primitive “callable” objects, or functions,
are specific semantics rules defined directly by us. Sometimes a function may be attached to an object,
in which case, the object will be passed as the parameter self to the function.
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Lists, Tuples, built-in Modules, and built-in Classes derive from Object. Some mutable values may
not allow any modification to their attributes, e.g. Tuples do not allow changing the content of the values
they hold. The name “Mutable Values” refers to their ability to point at other values (either Primitive and
Mutable).

The state of a Python program–called the store in Pytropos–is a tuple from (Global × Heap) where
Global is the “global scope” of variables, and Heap the heap (where all values are stored).

Putting all together we get:

Global ∶= Iden → Addr ∪ {Undefined}
Heap ∶= Addr → Val ∪ {Undefined}

Val ∶= PrimVal | Object | <prim-callable>
| Addr × <prim-callable> function associated to value

PrimVal ∶= 𝑖 ∈ ℤ | 𝑗 ∈ float | True | False | None
Object ∶= Type × Addr × (Key → Addr ∪ {Undefined})
Type ∶= List | Tuple | Module
Key ∶= Iden + (string × Val)

<prim-callable> ∶= <prim-append> | <prim-+-int> | <prim-+-float> | <prim-*-int> | ⋯

A <prim-callable> is a value that is a built-in function in Python. The special value Undefined is
used to signal unassigned values in Global and Heap. If one tries to operate with an Undefined value the
execution should halt, operating with Undefined values is forbidden as they never appear on Python. In
Python, an Undefined value is an erroneous memory value or an unassigned region of memory.

An Iden is a Python identifier. A Python identifier is a string that can only contain letters, numbers, and
the character _ . An identifier cannot start with a number2.

Notice how the index (Key) for the function that relates an Object to its attributes can be one of two
things. Key is either a Iden or a tuple (string × Val). The idea behind indexing an object with two separate
kinds of keys is to be able to differentiate between a value that is inherent to the Object and others values to
which the object simply points to. Consider a list, an inherent, unmodifiable, value of a list is its size. The
size of a list can only be modified if an element is added or removed from it. Now, consider the value at the
index 2 of the list [2, 54, [True], 6, 0.0] , the value is another Object. Any object stored in a list is
not an intrinsic property of the list.

AKey can be a tuple (string × Val). There are only two kinds of “tupled” keys in the current specification,
either ('index', val) or ('attr', val) . A key of the form ('attr', val) indicates us that val

(hopefully an Iden) is an attribute of the object. ('index', val) is used for lists.
For example, the list [None, 4, ()] can be expressed as:

(List, 𝑛, 𝑙)

where 𝑛 ∈ ℤ, and
2We are simplifying here for the sake of brevity. In fact, Python 3 does allow a wide array of Unicode characters to construct an

identifier. https://docs.python.org/3/reference/lexical_analysis.html#identifiers
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𝑠(𝑖) =

⎧
{
{
⎨
{
{
⎩

𝑛 + 1 if 𝑖 = ’size’
𝑛 + 2 if 𝑖 = (’index’, 0)
𝑛 + 3 if 𝑖 = (’index’, 1)
𝑛 + 4 if 𝑖 = (’index’, 2)
Undefined otherwise

The first element of the triple is List, indicating us that the Object is a list. The second element is the
address on the heap, a natural number. The third element is a function from Keys to Vals. Strictly speaking
an Object cannot be defined in isolation, it requires to be defined as part of a Heap:

ℋ(𝑚) =

⎧
{{{{
⎨
{{{{
⎩

(List, 𝑛, 𝑠) if 𝑚 = 𝑛
1 if 𝑚 = 𝑛 + 1
None if 𝑚 = 𝑛 + 2
4 if 𝑚 = 𝑛 + 3
(Tuple, 𝑛 + 4, 𝑡) if 𝑚 = 𝑛 + 4
0 if 𝑚 = 𝑛 + 5
Undefined otherwise

and

𝑡(𝑖) = { 𝑛 + 5 if 𝑖 = ’size’
Undefined otherwise

Semantics of Expressions

In the same manner, as Fromherz et al. (2018), we define the semantics of an 𝔼J𝑒𝑥𝑝𝑟K as a function that
takes a state and returns a state plus a value.

An expression takes as inputs:

• A Global Scope, and
• A Heap

and the result of executing an expression is:

• A new Global Scope,
• A new Heap, and
• One of three things: a Val, an Iden or a tuple Object × (string × Val)).

Notation: A brief note on the semantics presented below. Opposed to how the semantics were
presented in Chapter 3, we present the semantics in here in raw/plain text form due to the high
time they require to write properly in LATEX maths. We apologise in advance to the readers who
may have wished on polished, mathy looking equations. Please accept this cake as an apology
🍰.

E[expr] : Global x Heap
→ Global
x Heap
x (Val + (Object x (string x Val)) + Iden)
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E[Name(id, ctx)](G, H) :=
match ctx in
case Load → if G(id) = Undefined

-- if a variable is not in the global scope we check if it is builtin
then if isbuiltin(id)

then (G, H, <builtin-val>(id))
else <Execution Halt>

else (G, H, H(G(id)))

-- Something will be stored in id S[Assign(...)] or variation will take care of it
case Store → (G, H, id)

-- The id will be deleted, S[Delete(...)] will take care of it
case Del → (G, H, id)

E[BinOp(op, a, b)](G, H) :=
let (G1, H1, v1) := E[a](G, H)

(G2, H2, v2) := E[b](G1, H1)
in if kind(v1) ≠ Val or kind(v1) ≠ Val

then <Execution Halt> -- error at parsing
else let prim_op := get_prim_op(op, v1, v2)

in prim_op(G2, H2)

E[Attribute(e, attr)](G, H) :=
let (G1, H1, ad) := E[e](G, H)

-- `e` must compute to a Val
v := if not is_value(ad) then <Execution Halt> else ad

in match v in
case v: PrimVal →

-- primitive, similar how get_prim_op is coded
get_prim_attr(type(v), attr)(G1, H1, v)

case (t, addr, o): Object →
-- ALL values in the current definition are builtin
if builtin(t)
then get_prim_attr(t, attr)(G1, H1, v)

-- Accessing (non builtin) value's attributes never happens.
-- This code is left to show how we plan to expand the current
-- system to support attribute access for custom objects
else let addr := o('attr', attr)

in if addr = Undefined
then <Execution Halt>
else (G1, H1, H1(addr))

case <prim-callable> →
(G1, H1, v)
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E[Subscript(e, i, ctx)](G, H) :=
let (G1, H1, ad) := E[e](G, H)

v := if not is_value(ad) then <Execution Halt> else ad
(G2, H2, ind) := E[i](G1, H1)

in
match ctx in

-- A Subscript with Load always returns a Val
case Load →

match kind(v) in
case (_, _, o): Object →
let addr := o('index', ind)
in if addr = Undefined

then <Execution Halt>
else (G2, H2, H2(addr))

-- No PrimVal or <prim-callable> is subscriptable
otherwise → <Execution Halt>

-- A Subscript with Store always returns a (Object x (string x PrimVal))
case Store →

match v in
-- There is one check left to do, ind should be a prim val
case Object → (G2, H2, (v, ('index', ind)))
otherwise → <Execution Halt>

case Del →
if kind(v) = Object
then (G1, H1, (v, ('index', ind)))
else <Execution Halt>

E[List(lst)](G, H) :=
let freeaddr := get_free_addr(H)

empty_lst_fun('size') := length(lst)
empty_lst_fun('index', n) :=

if n < length(lst)
then lst[n] -- abusing notation, taking the `n` value from the list
else Undefined

lst := (List, freeaddr, empty_lst_fun) -- An object is a tuple
in (G, H[freeaddr→lst], lst)

E[Call(caller, vals)](G, H) :=
match E[caller](G, H) in

-- Abusing notation by magically unfolding `vals`
case (G1, H1, call: <prim-callable>) → call(*vals, G, H)
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otherwise → <Execution Halt> -- the caller must be a Val

<builtin-val> : string → Val
<builtin-val>(id) :=

match id in
case 'int' → <prim-int-type>
case 'list' → <prim-list-type>
...

<Execution Halt> is used in two ways in here. Either it means that we found an operation that throws
an exception (which this specification does not handle), or it means that the AST is malformed and nothing
can be further calculated (an example of this is using the wrong context, e.g. Load when the value required
is the Store context).

Notice that we make use of get_prim_op to find the appropriate primitive function to operate two
different values. Later, when we extend Python with NumPy arrays we will extend get_prim_op to work
with them.

get_prim_op :: Op x Val x Val → Global x Heap → Global x Heap x Val

get_prim_op(Add, t1, t2) :=
match (type(v1), type(v2)) in
case (Int, Int) → <prim-+-int>(v1, v2, G, H)
case (Float, Float) → <prim-+-float>(v1, v2, G, H)
case (Int, Bool) → λ(G, H) → <prim-+-int>(v1, to_int(v2), G, H)
case (Bool, Int) → λ(G, H) → <prim-+-int>(to_int(v1), v2, G, H)
case (Float, a) → if a = Bool or a = Int

then λ(G, H) → <prim-+-float>(v1, to_float(v2), G, H)
else <Execution Halt>

case (a, Float) → if a = Bool or a = Int
then λ(G, H) → <prim-+-float>(to_float(v1), v2, G, H)
else <Execution Halt>

-- This function is to be extended once we add NdArrays to the mix
case otherwise → <Execution Halt>

As an example, <prim-+-int> is defined as the function:

<prim-+-int> : Val x Val x Global x Heap → Global x Heap x Val
<prim-+-int>(i, j, G, H) := (G, H, i+j)

Statements Semantics

The semantic of statements is a function between the state of the program, just like it was done with
expressions. Unlike with expressions, the semantics of statements do not return any kind of value, they just
modify the state of the program.

S[stmt] :: Global x Heap → Global x Heap
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S[Assign(var, val)](G, H) :=
let (G1, H1, ass) := E[var](G, H)

(G2, H2, rightval) := E[val](G1, H1)
rval := if is_value(rightval) then val else <Execution Halt>

in
match ass in

case Iden → (G2[ass→rval], H2)

case ((t, addr, o): Object, ('index', val: Val)) →
let setindex := get_prim_set_index(t)
in setindex(G2, H2, o, val, addr, rval)

-- This case doesn't come up, it is only required when when user objects
-- are allowed
-- case ((t, addr, o): Object, ('attr', val: Val)) →
-- let

otherwise → <Execution Halt>

-- Behaviour in Python 4
S[AnnAssign(var, hint, val)](G, H) := S[Assign(var, val)](G, H)

-- Behaviour in Python 3
S[AnnAssign(var, hint, val)](G, H) :=

let (G1, H1, evaluatedhint) := E[hint](G, H) -- In Python 3 the hint is computed
in S[Assign(var, val)](G1, H1)

get_prim_set_index : Type
→ type(G) x type(H) x (Key → Undefined + Addr) x Val x Addr x Val
→ type(G) x type(H)

get_prim_set_index(List)(G, H, o, ind, addr, rval) :=
if kind(ind) ≠ Int
then <Execution Halt>
else if 0 <= ind and ind < o('size') -- negative cases can be added later
then

let newlst := (List, addr, o[ind→rval])
in (G, H[addr→newo])

else <Execution Halt>
get_prim_set_index(Tuple)(G, H, o, ind, addr, rval) := <Execution Halt>
get_prim_set_index(_)(G, H, o, ind, addr, rval) := <Execution Halt>

S[Delete(e)](G, H) :=
let (G1, H1, a) := E[e](G, H)
in

match a in
case Val → <Execution Halt>
-- e should have returned a way to find the place to remove the value



A.1. Python (reduced) syntax and semantics 65

case Addr → <Execution Halt>
case Iden → (G[e → Undefined], H)
case ((type, addr, o): Object, key: (string x Val)) →

let del := get_prim_delete(type, key)
in del(G1, H1, o, addr)

get_prim_delete(List, key) :=
match key in
case ('index', val: Val) →

<prim-del-index-list>(val)
otherwise → <Execution Halt>

get_prim_delete(Tuple, key) := <Execution Halt>
-- other get_prim_delete could be added, for example if attributes could be deleted
-- (only with user defined objects)

<prim-del-index-list> : Val
→ Global x Heap x (Key → Undefined + Addr) x Addr
→ Global x Heap

<prim-del-index-list>(ind)(G, H, lst, addr) :=
if type(ind) ≠ Int
then <Execution Halt>
else

-- We handle only positive cases
if ind < lst('size') and ind >= 0
then let newlst1 := shift-left-ind-in-list(lst, ind, lst('size'))

newlst2 := newlst1[('index', size-1)→Undefined]
in (G, H[addr→newlst2])

else <Execution Halt>

shift-left-ind-in-list(lst, ind, size) :=
if ind < size - 1
then shift-left-ind-in-list(lst[('index', ind)→lst('index', ind+1)], ind+1, size)
else lst

-- Import will be defined later once we introduce the NumPy library
S[Import(name)](G, H) := <Execution Halt>

Notice that type annotations behave differently in Python 4 to Python 3.6+. Type annotations in Python
3.6+ are normal expressions in the language. Thus they are evaluated and canmodify the state of the program.
For Python 4, it is planned that Type annotations will not modify the state of the program3 but must obey
the syntax of Python. In Python 3.7 a __future__ import was added to modify the behaviour/semantics
of Type Annotations for Python 3.7+. One can add from __future__ import annotations at the start
of the file to forgo the evaluation of type annotations. We assume in this work that the type annotations
do not alter the state, i.e. we assume that the user implicitly or explicitly is using the annotations ’ future
statement.

3Well, this is not strictly true. In both, Python 3.6+ and Python 4, type annotations are stored in the special variable called
__annotations__ .
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In this specification, the delete statement is only able to delete variables in the global scope, but cannot
delete attributes of an object. This limitation comes from the fact that the specification lacks the capacity to
define user-defined classes. Future work will focus on extending the state model to include function variable
scope, and the ability to define functions and classes.

A.1.3 NdArrays

The purpose of the specification is to be able to construct from it an Abstract Interpreter. To test the Abstract
Interpreter abilities to find bugs it should be able to handle NumPy array (tensors). In this subchapter, we
extend the specification with NumPy array and discuss some of their semantics.

The following are all the things to take into account when extending our specification to handle a new
type of “built-in” Object type:

1. Extend the types of Objects to handle NumPy arrays.

Type ∶= List | Tuple | Module | NdArray

As an example, consider the numpy array np.zeros((4, 3)) , it can be expressed as:

(NdArray, 𝑛, 𝑠)

where 𝑛 ∈ ℤ, and

𝑠(𝑖) =
⎧{
⎨{⎩

𝑛 + 1 if 𝑖 = ’shape’
𝑛 + 5 + 𝑚 + 3𝑜 if 𝑖 = (’index’, 𝑚, 𝑜) ∀𝑚 ∈ [0, 3], 𝑜 ∈ [0, 2]
Undefined otherwise

𝑡(𝑖) =

⎧{{
⎨{{⎩

𝑛 + 2 if 𝑖 = ’size’
𝑛 + 3 if 𝑖 = (’index’, 0)
𝑛 + 4 if 𝑖 = (’index’, 1)
Undefined otherwise

ℋ(𝑚) =

⎧
{{{{
⎨
{{{{
⎩

(NdArray, 𝑛, 𝑠) if 𝑚 = 𝑛
(Tuple, 𝑛 + 1, 𝑡) if 𝑚 = 𝑛 + 1
2 if 𝑚 = 𝑛 + 2
4 if 𝑚 = 𝑛 + 3
3 if 𝑚 = 𝑛 + 4
0 if 𝑚 = 𝑛 + 5 + 𝑜 ∀𝑜 ∈ [0, 11]
Undefined otherwise

2. Extend primitive functions with NumPy’s primitive functions. The NumPy’s primitive functions
implemented in the Abstract Interpreter are: array , zeros , dot , ones , abs (and all other
functions that don’t alter the shape of the tensor they take), arange , size , ndim , astype , and T .

<prim-callable> = ⋯ (old operations) | <prim-np-zeros> | <prim-np-dot> | <prim-np-abs> | ⋯

Note: The values stored inside a NumPy array are considered irrelevant in this work. The Value
Analysis built in this work considers only the shape of tensors, as tensors can be huge and their contents
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do not often influence their shape. Therefore, it would be wasteful to give a detailed specification of
the NumPy library primitives.

Nonetheless, defining formally each one of the NumPy functions above is fairly straightforward.
Although, the hardest part of a formal definition of NumPy arrays is detailing how array works. To
define the function <np-array> one must consider the many input cases it can handle, and it can
handle almost any Python object4.

Once the <np-array> function is implemented all other functions are much simpler to define. As an
example, the implementation of the function size is:

<prim-np-size> (𝒢, ℋ) ∶=
let (𝒢1, ℋ1, (NdArray, 𝑎𝑑𝑑𝑟, 𝑎𝑟𝑟)) ∶= <prim-array> (𝑣𝑎𝑙) (𝒢, ℋ)

(Tuple, 𝑎𝑑𝑑𝑟𝑡𝑢𝑝, 𝑡𝑢𝑝) ∶= 𝑎𝑟𝑟(’shape’)
in 𝑡𝑢𝑝(’size’)

3. Extend the cases that get_prim_op handles to cover NumPy arrays. All operations defined inNumPy
handle broadcasting. For example:

𝑔𝑒𝑡_𝑝𝑟𝑖𝑚_𝑜𝑝 (Add, 𝑣1, 𝑣2) ∶=
match (𝑡𝑦𝑝𝑒(𝑣1), 𝑡𝑦𝑝𝑒(𝑣2)) in

⋯ old cases
case (NdArray, _) →

𝜆 (𝒢, ℋ) →
let (𝒢1, ℋ1, 𝑛𝑑𝑎𝑟𝑟) ∶= <prim-array>(𝑣2) (𝒢, ℋ)
in <prim-+-ndarray> (𝑣1, 𝑛𝑑𝑎𝑟𝑟, 𝒢1, ℋ1)

case (_, NdArray) →
𝜆 (𝒢, ℋ) →

let (𝒢1, ℋ1, 𝑛𝑑𝑎𝑟𝑟) ∶= <prim-array>(𝑣1) (𝒢, ℋ)
in <prim-+-ndarray> (𝑛𝑑𝑎𝑟𝑟, 𝑣2, 𝒢1, ℋ1)

4. The NumPy module holding all operations is defined:

<numpy-mod> ∶= (Module, −1, 𝑓numpy)

where −1 indicates that the address is to be set only when the module is imported, and

𝑓numpy(𝑠) =

⎧
{{{
⎨
{{{
⎩

<prim-array> if 𝑠 = (’attr’, ’array’)
<prim-dot> if 𝑠 = (’attr’, ’dot’)
<prim-zeros> if 𝑠 = (’attr’, ’zeros’)
<prim-ones> if 𝑠 = (’attr’, ’ones’)
…
Undefined otherwise

5. And finally, S[Import(name)] is extended (now it handles a single library):

4The NumPy function array takes almost anything as an input. array tries to interpret its input as an array in any way it
can. There is no formal definition of how the values are interpreted although its semantics can be extracted by looking at its C
implementation: https://stackoverflow.com/a/40380014
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𝕊♯JImport(𝑛𝑎𝑚𝑒)K (𝒢♯, ℋ♯) ∶=
match 𝑛𝑎𝑚𝑒 in
case (”numpy”, ) →

let (Module, 𝑎𝑟𝑟, 𝑚𝑜𝑑) ∶=< 𝑛𝑢𝑚𝑝𝑦 − 𝑚𝑜𝑑 >
𝑓𝑟𝑒𝑒𝑎𝑑𝑑𝑟 ∶= 𝑔𝑒𝑡_𝑓𝑟𝑒𝑒_𝑎𝑑𝑑𝑟(ℋ♯)

in (𝒢♯[’numpy’ ↦ 𝑓𝑟𝑒𝑒𝑎𝑑𝑑𝑟], ℋ♯ [𝑓𝑟𝑒𝑒𝑎𝑑𝑑𝑟 ↦ (Module, 𝑓𝑟𝑒𝑒𝑎𝑑𝑑𝑟, 𝑚𝑜𝑑)])
case (”numpy”, 𝑎𝑙𝑖𝑎𝑠) →

let (Module, 𝑎𝑟𝑟, 𝑚𝑜𝑑) ∶=< 𝑛𝑢𝑚𝑝𝑦 − 𝑚𝑜𝑑 >
𝑓𝑟𝑒𝑒𝑎𝑑𝑑𝑟 ∶= 𝑔𝑒𝑡_𝑓𝑟𝑒𝑒_𝑎𝑑𝑑𝑟(ℋ♯)

in (𝒢♯[𝑎𝑙𝑖𝑎𝑠 ↦ 𝑓𝑟𝑒𝑒𝑎𝑑𝑑𝑟], ℋ♯ [𝑓𝑟𝑒𝑒𝑎𝑑𝑑𝑟 ↦ (Module, 𝑓𝑟𝑒𝑒𝑎𝑑𝑑𝑟, 𝑚𝑜𝑑)])

A.2 Abstract Interpreter

We have the base to build an Abstract Interpreter, we have the semantics of Python (what is a variable, what
is the state of the program, and how to modify the program (its formal semantics)).

The steps to build an Abstract Interpreter are:

• Define a Variable Abstract Domain,
• Define a State Abstract Domain, and
• Define the abstract semantics for the language.

A.2.1 Variable Abstract Domain

Remember, the possible values that a variable may have in Python are:
Val ∶= PrimVal | Object | <prim-callable>

| Addr × <prim-callable> function associated to value
PrimVal ∶= 𝑖 ∈ ℤ | 𝑗 ∈ float | True | False | None
Object ∶= Type × Addr × (Key → Addr ∪ {Undefined})
Type ∶= List | Tuple | Module
Key ∶= Iden + (string × Val)

The definition ofVal is recursive but it is not the definition of PrimVal. We will start defining an Abstract
Domain for PrimVals and later we will expand on it to define a “recursive” definition for the Abstract
Domain of Vals.

PrimVal Abstract Domain

PrimVal is composed of five different types: Int, Float, Bool, NoneType, and Undefined. We can define
individual non-relational Abstract Domains (Abstract Domain) for each of the types5.

The simplest of all Abstract Domain is that of NoneType, NoneType♯. None is the only inhabitant of
NoneType, with the order:

5A relational Abstract Domain is an Abstract Domain where the value of the variables is not assumed to be independent of
each other. For more information on relational Abstract Domains look at Miné (2004). All Abstract Domains used in this work are
non-relational Abstract Domains as they are simpler to understand and implement. Future work will include extending the arrange
of Abstract Domains to use to some relational Abstract Domains.
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∅ ≤ ∅
{None} ≤ {None}

∅ ≤ {None}

The Galois connection for this order is also very simple:

𝛼 ({None}) = None♯

𝛼 (∅) = ⊥NoneType

and 𝛾 (None♯) = {None}
𝛾 (⊥NoneType) = ∅

A little bit more interesting is the Abstract Domain for Bool, Bool♯. Bool is inhabited only by True and
False . Bool♯ is inhabited by four elements, namely:

⊤Bool

⊥Bool

True False

Notation: Notice that in the figure above6, we abuse notation and write False and True for the
elements False♯ and True♯, respectively. We have done this to keep the equations simple, but
strictly speaking the elements from Bool♯ are not interchangeable with the elements of Bool.

The Galois connection for this lattice is also quite simple:

𝛼∶ 𝒫(Bool) → Bool♯

∅ ↦ ⊥Bool

{𝑇 𝑟𝑢𝑒} ↦ 𝑇 𝑟𝑢𝑒♯

{𝐹𝑎𝑙𝑠𝑒} ↦ 𝐹𝑎𝑙𝑠𝑒♯

{𝑇 𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} ↦ ⊤Bool

Where 𝛾 is just defined as 𝛼−1 given 𝛼’s bijectivity.
Notice how our previous two Abstract Domains do not require us to define widening or narrowing

operators because none of them has an infinite ascending chain of values, i.e. there do not exist 𝑣𝑖 for all
𝑖 ∈ ℕ such that 𝑣𝑖 ≤ 𝑣𝑖+1.

For Int and Float there a plethora of Abstract Domains to chose from. For an in depth analysis on many
of the available Abstract Domains for numbers see Miné (2004). We are going to use here the simplest
Abstract Domain for number systems there is: Constant Propagation (Kildall, 1973).

Constant Propagation is very simple, in fact, the previously defined Bool♯ Abstract Domain is a Constant
Propagation Abstract Domain. We define Int’s Abstract Domain as:

6This kind of diagram is called Hasse diagram. A Hasse indicates the order of the elements in a partially ordered set by means
of the position of the elements in the diagram and the links between them. An element connected to other below is consider bigger
or equal than the element below.
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⊤Int

⊥Int

0 1 4232 ⋯

Notation: Remember that to keep things light, 𝑛♯ is represented as 𝑛.

In the same manner as with Bool♯, we define the Galois connection as:

𝛼∶ 𝒫(Int) → Int♯

∅ ↦ ⊥Int

{𝑛} ↦ 𝑛
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ↦ ⊤Int

and

𝛾∶ Int♯ → 𝒫(Int)
⊥Int ↦ ∅

𝑛 ↦ {𝑛}
⊤Int ↦ Int

where

Int♯ = Int ∪ {⊤Int, ⊥Int}

We define Float♯ just in the same way.
Now that we have an Abstract Domain for each primitive value, we can construct an Abstract Domain for

PrimVal. The idea is simple, as shown in the figure below, we just define an Abstract Domain that groups
all the Abstract Domains for primitive values together:

⊤PrimVal

⊥PrimVal

None
⊤Bool

True False

⊥Bool

⊤Int

0 1 4232 ⋯

⊥Int

⊤Float

⊥Float

Float

⊥None

The formal definition is in the same lines as the others already shown. Now, consider the Galois
connection:
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𝛼PrimVal ∶ 𝒫(PrimVal) → PrimVal♯

∅ ↦ ⊥PrimVal

{𝑛} ↦ 𝑛♯

𝑠 ↦

⎧{{
⎨{{⎩

⊤Int if ∀𝑚 ∈ 𝑠 ∶ 𝑚 ∈ Int
⊤Float if ∀𝑚 ∈ 𝑠 ∶ 𝑚 ∈ Float
⊤Bool if ∀𝑚 ∈ 𝑠 ∶ 𝑚 ∈ Bool
⊤PrimVal otherwise

This is not the only way to define an Abstract Domain out of other Abstract Domains. In fact, there
are many ways, one of which is to define an Abstract Domain where each individual Abstract Domain is
extended with a new UndefinedType value, and they are all grouped into a tuple (Fromherz et al., 2018).

Vals Abstract Domain

Val definition
Remember Val’s definition:

Val ∶= PrimVal | Object | <prim-callable>
| Addr × <prim-callable> function associated to value

Object ∶= Type × Addr × (Key → Addr ∪ {Undefined})

Type ∶= List | Tuple | Module
Key ∶= Iden + (string × Val)

Heap ∶= Addr → Val ∪ {Undefined}

A couple of important details about Val’s definition:

• A Val can be a PrimVal, an Object or a <prim-callable>.
• A Val is not isolated, it makes part of a bigger set of variables, all of them must be defined in Heap.

Any Val we define must be stored in ℋ ∈ Heap.
• We say that a (𝑎, ℋ) ∈ Addr × Heap is a valid value if every value defined in ℋ: 𝑣𝑎𝑟𝑠 = {𝑣 ∈

𝐼𝑚𝑔(ℋ) ∶ 𝑣 ≠ Undefined} is reachable from ℋ(𝑎), and no Addr inside any defined Addr points to
Undefined.

An example of a possible value is (0, ℋ) where ℋ is defined as:

ℋ(𝑚) =

⎧
{{{{
⎨
{{{{
⎩

(List, 0, 𝑙) if 𝑚 = 0
3 if 𝑚 = 1
None if 𝑚 = 2
4 if 𝑚 = 3
(Tuple, 4, 𝑡) if 𝑚 = 4
0 if 𝑚 = 5
Undefined otherwise

𝑙(𝑖) =

⎧
{
{
⎨
{
{
⎩

1 if 𝑖 = ’size’
2 if 𝑖 = (’index’, 0)
3 if 𝑖 = (’index’, 1)
4 if 𝑖 = (’index’, 2)
Undefined otherwise

𝑡(𝑖) = { 5 if 𝑖 = ’size’
Undefined otherwise

We shall remember this example from a previous subsection (see A.1.2). This heap contains the list
[None, 4, ()] in memory.
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Notice that the values (1, ℋ), (2, ℋ), …, and (5, ℋ) are not considered valid as it is impossible starting
from one of them to reach all other values in the Heap. We will consider only valid values for the rest of the
document, which means that all equations will assume all values and states to be valid. If we were to find a
non-valid value (𝑛, ℋ), we could define a new (𝑛, ℋ′) where ℋ′ has all non-reachable values removed.

𝑉 𝑎𝑙♯ definition

An Abstract Value is a tuple (𝑎, ℋ♯) ∈ (𝐴𝑑𝑑𝑟) × (𝑉 𝑎𝑙)♯ where:
Val♯ ∶= PrimVal♯ | Object♯ | <prim-callable>♯

| Addr × <prim-callable>♯

Object♯ ∶= Type × Addr × ((Key → Addr ∪ {Undefined}) ∪ {ImBot, ImTop})

Heap♯ ∶= Addr → Val♯ ∪ {Undefined}

Notice that a Val♯ requires a Heap to work! Just as Val required it. Some examples of Abstract Values
are (𝑎, ℋ♯) ∈ Val♯ × Heap♯ are:

(0, [0 ↦ 3]) (0, [0 ↦ ⊤Int]) (0, [0 ↦ ⊥Bool]) (0, [0 ↦ ⊤Val])

(0, [
0 ↦ (List, 0, [’size’ ↦ 1, (’index’, 0) ↦ 2, (’index’, 2) ↦ 0 (’index’, 6) ↦ 3])
1 ↦ ⊤Int

2 ↦ 21.3
3 ↦ (Tuple, 3, ImBot)

])

Notation: Once more, we are abusing notation for convenience. [] represents a function which
codomain is only Undefined, and [0 ↦ 5, 1 ↦ None] represents a function which output to the
in puts 0 and 1 is 5 and None, respectively.

Notice that we can represent any valid value (𝑎, 𝐻#) as a graph with 𝑎 as root:
We have defined the first ingredient of the Val♯ Abstract Domain. The steps left are:

• Define abstraction 𝛼 and concretisation 𝛾 functions,
• define an order relation,
• join (⊔Val♯) and merge (⊓Val♯) operations, and
• a Galois connection.

⊔Val♯ definition

We will start by defining the join operation and the rationale behind its inner workings. All other operations
and functions are constructed in a very similar way as join is defined.

Uval: (Addr x Heap#) x (Addr x Heap#) → (Addr x Heap#)
(n, H1#) Uval (m, H2#) :=

let on := H1#(n)
om := H2#(m)

in if on is Object# and om is Object#



A.2. Abstract Interpreter 73

then let (n', joined, Hnew#) := joinVal((n, H1#), (m, H2#), join_empty, H_empty)
in (n', removeallInConstruction(Hnew#, joined, H1#, H2#))

else if on is PrimVal# and om is PrimVal#
then (0, H_empty#[0→on UPrimVal# om])
else if on = Bot_Val
then (0, H_empty#[0→om])
else if om = Bot_Val
then (0, H_empty#[0→on])
-- checking all other cases TopVal = TopVal, <prim-_> = <prim-_>, ...
else if on = om
then (0, H_empty#[0→on])
-- the last case is when the two values have different types altogether
else (0, H_empty#[0→Top_Val])

join_empty: Addr x Addr → (Addr + Undefined)
join_emtpy(a,b) := Undefined

H_empty: Heap#
H_empty(a) := Undefined

join revises the type of both values and defines a value that unifies them, they follow the following
sensible rules:

• ⊥Val must be the lowest value in the order, therefore any value joining with it should be the same value
(⊥Val ⊔ 𝑛 = 𝑛).

• ⊤Val is the biggest value in the order, therefore any value joining with it should give back ⊤Val (⊤Val ⊔𝑛 =
⊤Val).

• Values of the same kind, PrimVal♯,Object♯ and <prim-callable>♯, should not be comparable, e.g. any
value from PrimVal♯ joined with any of Object♯ should gives ⊤Val.

• Joining PrimVal♯s should use ⊔PrimVal♯ .
• Joining Object♯s should take into account the recursive nature of the definition of Val♯s and Object♯s.

Without further ado, the definition of ⊔Val♯ ( joinVal ):

HeapCon# = Addr → Val# + Undefined + InConstruction

-- we assume that (n,H1#) and (n,H1#) are Object#s
joinVal: (Addr x Heap#) x (Addr x Heap#) x (Addr x Addr → Addr + Undefined) x HeapCon#

→ Addr x (Addr x Addr → Addr + Undefined) x HeapCon#
joinVal((n,H1#), (m, H2#), joined, H_new#) :=

let joined_left := {l \in Addr | E r \in Addr : joined(l,r) != Undefined}
joined_right := {r \in Addr | E l \in Addr : joined(l,r) != Undefined}

in if n in joined_left or m in joined left -- n or m has already been visited
then if joined(n, m) != Undefined

-- an address for the new Object# has already been defined
then (joined(n,m), joined, H_new#)
-- either n or m had already been joined to another object, every variable
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-- they can reach should be Top_Val because the paths to reach them are
-- different in the two states
else let (joined', H_new'#) :=

makeallreachabletop((n, H1#), (m, H2#), joined, H_new#)
ad := freeaddr(H_new'#)

in (ad, joined[(n,m)→add], H_new'#[ad→Top_Val])
-- we know that H1#(n) and H2#(m) are both 'Object#'s because the call from UVal#
-- checked so
else let -- n and m haven't already been visited

(tn, adn, fn) := H1#(n)
(tm, adm, fm) := H2#(m)

in if tn != tm -- the two Object#s are not of the same type
then let (joined', H_new'#) :=

makeallreachabletop((n, H1#), (m, H2#), joined, H_new#)
ad := freeaddr(H_new'#)

in (ad, joined[(n,m)→add], H_new'#[ad→Top_Val])
-- both objects have the same type
else if fn = ImTop and fm = ImTop

then let ad := freeaddr(H_new'#)
in (ad, joined[(n,m)→ad], H_new#[ad→(tn,ad,ImTop)])

else if fn = ImTop
then let (joined', H_new'#) :=

makeallreachabletop_right((m, H2#), joined, H_new#)
ad := freeaddr(H_new'#)

in (ad, joined'[(n,m)→ad], H_new'#[ad→Top_Val])
else if fm = ImTop
then let (joined', H_new'#) :=

makeallreachabletop_left((n, H1#), joined, H_new#)
ad := freeaddr(H_new'#)

in (ad, joined'[(n,m)→ad], H_new'#[ad→Top_Val])
-- if any of the two values is Bot then we leave the new value as
-- InConstruction until the end of the execution
else if fn = ImBot or fm = ImBot
then let adnew := freeaddr(H_new#)

in (adnew, joined[(m,n)→adnew], H_new#[adnew→InConstruction])
-- both, fn and fn, are (Key → Addr + Undefined)
-- notice that `InConstruction` is assigned to the address `ad`, but
-- once we return from the recursive call we can now replace the value
-- for a proper object definition
else let ad := freeaddr(H_new#)

(fnew, joined', H_new'#) := joinObjectFn(
(fn, H1#),
(fm, H2#),
joined[(n,m)→ad],
H_new#[ad→InConstruction])

in if H_new'#(ad) = InConstruction
then (ad, joined', H_new'#[ad→(nt, ad, fnew)])
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else (ad, joined', H_new'#)

joinObjectFn: ((Key → Addr + Undefined) x Heap#) x ((Key → Addr + Undefined) x Heap#)
x (Addr x Addr → Addr + Undefined) x HeapCon#
→ (Key → Addr + Undefined) x (Addr x Addr → Addr + Undefined) x HeapCon#

joinObjectFn((fn, H1#), (fm, H2#), joined, H_new#) :=
let fn_empty: (Key → Addr + Undefined)

fn_empty = Undefined

PreIm: (Key → Addr + Undefined) → P(Key)
PreIm(fun) := {ad \in Addr | fun(ad) != Undefined}

helper: ((Key → Addr + Undefined) x (Addr x Addr → Addr + Undefined) x HeapCon#)
x Key
→ ((Key → Addr + Undefined) x (Addr x Addr → Addr + Undefined) x HeapCon#)

helper((fnew, joined, H_new#), key) :=
if fm(key) = Undefined
then let (joined', H_new'#) :=

makeallreachabletop_left((fn(key), H1#), joined, H_new#)
ad := freeadd(H_new'#)

in (fnew[key→ad], joined', H_new'#[ad→Top_Val])
else if fn(key) = Undefined
then let (joined', H_new'#) :=

makeallreachabletop_right((fm(key), H2#), joined, H_new#)
ad := freeadd(H_new'#)

in (fnew[key→ad], joined', H_new'#[ad→Top_Val])
-- key is defined in both, fn and fm
else let

adn := fn(key)
adm := fm(key)
val1 := H1#(adn)
val2 := H2#(adm)
ad := freeadd(H_new'#)

-- same code that was in
in if val1 is Object# and val2 is Object#

then let (n', joined', H_new'#) = joinVal((n, H1#), (m, H2#), joined, H_new#)
in (fnew[key→n'], joined', H_new'#)

else if val1 is PrimVal# and val2 is PrimVal#
then (fnew[key→ad], joined[(adn,adm)→ad], H_new#[ad→val1 UPrimVal# val2])
else if on = Bot_Val
then (fnew[key→ad], joined[(adn,adm)→ad], H_new#[ad→InConstruction])
else if val2 = Bot_Val
then (fnew[key→ad], joined[(adn,adm)→ad], H_new#[ad→InConstruction])
-- checking all other cases TopVal = TopVal, <prim-_> = <prim-_>, ...
else if on = val2
then (fnew[key→ad], joined[(adn,adm)→ad], H_new#[ad→on])
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-- the last case is when the two values have different types altogether
else (fnew[key→ad], joined[(adn,adm)→ad], H_new#[ad→Top_Val])

in foldl(helper, (fn_emtpy, joined, H_new#), PreIm(fn) U PreIm(fm))

Notice that it is in joinVal (⊔Val♯) where the whole magic of this Abstract Domain lies. joinVal is
meant to walk through both graphs simultaneously, find the similarities, implode the differences between
the graphs and preserve all parts that coincide.

The definition of joinVal requires the help of the function joinObjectFn which joins the values to
which an Object♯ points (the function (Key → Addr ∪ {Undefined})).

joined is a function that stores the similarities between nodes (values), and Hnew# stores the values
of each new value. The type of Hnew# is not ℋ♯ but Addr → Val♯ ∪ {Undefined, InConstruction}, i.e. the
output of Hnew# is the same of ℋ♯ but it has an additional value called InConstruction . The new value
to which a heap can point to is InConstruction and it is meant to be a wildcard value while the graph is
being constructed.

One last function, that was not explained before is removeallInConstruction . It is in charge of looking
in the Heap if there is any reference to some InConstruction value left. All InConstruction values left
after returning from the whole walk will only be those which appeared when joining some node to a ImBot
or Bot_Val . Because we expect ImBot ⊔ 𝑓𝑛 = 𝑓𝑛, we must copy all values from the joining heaps into the
new heap.

Val♯ Order definition

Now that we have defined the join function, we can move to the function that defines a lattice, the order
function.

We define ≤ as 𝑎 ≤Val♯ 𝑏 ⟺ 𝑏 = 𝑎 ⊔Val♯ 𝑏. This definition follows from the definition of join: given
any two values 𝑎, 𝑏 ∈ lattice, it is always possible to find a value that is bigger than 𝑎 and 𝑏 such that it is the
smallest of the bigger values. In the case 𝑎 < 𝑏, then we can be certain that 𝑏 will be the result of joining 𝑎
with 𝑏, otherwise there would be a value smaller than 𝑏 that is also bigger or equal than 𝑏. What we are
trying to argue in here is that we can define a lattice by either defining an order relation or a proper join
operation for it. We leave the proof that ≤ defines an order for valid values ((𝑎, ℋ♯) ∈ Val♯ × Heap♯) for
future work.

Other definitions

Our goal is not to present in detail all functions and operations necessary to define the Abstract Domain for
Val♯s. That would require three times the space already used in this document. What we wanted to show
here is the rationale behind the implementation to give it a little more formal depth.

The merge operation is defined as it was join. The main difference between the two is what is the result of
operating two values of different types. Joining values with differing types gives us ⊤ values, while merging
gives us ⊥ values.

A.2.2 State Abstract Domain

Now that we have a Value Abstract Domain, we can extend it to the State of a Program. Doing so it’s
surprisingly easy, as all the blocks have already been laid down by the Value Abstract Domain.
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The State Abstract Domain is defined as the tuple (Global#, Heap#) where:
Global♯ ∶= Iden → Addr ∪ {Undefined}
Heap♯ ∶= Addr → Val♯ ∪ {Undefined}

Notice that Global♯ is a function that takes an identifier and outputs an address to where the variable
is stored, which is just the same thing to what the function (Key → Addr ∪ {Undefined}) inside Object♯

does. In fact, the function inside Object♯ has a bigger pre-image than that of Global♯ (Key is defined as
Iden+ (string × Val)). This means that we have no need to define a join operation from scratch for the State
Abstract Domain. We can just borrow/repurpose the already defined function joinObjectFun, defined for
Object♯s to Global♯s!

UState: (Global#, Heap#) x (Global#, Heap#) → (Global#, Heap#)
(G1#, H1#) UState (G2#, H2#) :=

let (Gnew#, joined, Hnew#) = joinObjectFn((G1#, H1#), (G2#, H2#), joined_empty, H_empty)
in (Gnew#, Hnew#)

Similarly, all other functions and operations can be defined as a special case of the Value Abstract Domain.

A.2.3 Abstract Semantics

In this section, we present some examples of the abstract semantics. Notice thatwe do not need the abstraction
and concretisation functions as the State and State Abstract Domains are quite similar. It is left for future
work to prove that the definitions stated in here are in fact derived from the Galois connection.

As examples, consider the semantics of expressions:

E#[expr] : Global# x Heap#
→ Global#
x Heap#
x (Val# + (Object# x (string x Val#)) + Iden)

E#[Name(id, ctx)](G#, H#) :=
match ctx in
case Load → if G#(id) = Undefined

-- the variable `id` has not been defined then we ”set” it in the
-- global scope and return `Top_Val`
then let ad := freeaddr(H#)

in (G#[id→ad], H#[ad→Top_Val], Top_Val)
else (G#, H#, G#(id))

case Store → (G, H, id)
case Del → (G, H, id)

E#[BinOp(op, a, b)](G#, H#) :=
let (G1#, H1#, v1) := E#[a](G#, H#)

(G2#, H2#, v2) := E#[b](G1#, H1#)
-- Notice the use of two different notations to make sure a var is Val#
-- kind(v) = Val# vs isvalue#(v)

in if kind(v1) ≠ Val# or kind(v1) ≠ Val#
-- Bad parsing! `E[e](G, H)` for e in {a,b} are supposed to return Val#
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-- Parsing errors halt the execution of the Abstract Interpreter
then <Execution Halt>
else

let prim_op# := get_prim_op#(op, v1, v2)
in prim_op#(G2#, H2#)

get_prim_op : Op x Val# x Val# → Global x Heap → Global x Heap x Val#

get_prim_op#(Add, v1, v2) :=
match (type(v1), type(v2)) in

case (Int, Int) → λ(G#, H#) → <prim-+-int>#(v1, v2, G#, H#)
case (Float, Float) → λ(G#, H#) → <prim-+-float>#(v1, v2, G#, H#)
case (Int, Bool) → λ(G#, H#)→ <prim-+-int>#(v1, Int(v2), G#, H#)
case (Bool, Int) → λ(G#, H#)→ <prim-+-int>#(Int(v1), v2, G#, H#)
case (Float, a) → if a = Bool or a = Int

then λ(G#, H#)→ <prim-+-float>#(v1, Float(v2), G#, H#)
else <prim-ret-top>#

case (a, Float) → if a = Bool or a = Int
then λ(G#, H#)→ <prim-+-float>#(Float(v1), v2, G#, H#)
else <prim-ret-top>#

case otherwise → <prim-op-top>#

<prim-op-top># : Global# x Heap#
<prim-op-top>#(G#, H#) := (G#, H#, Top_Val)

Notice that parsing errors still halt the execution of the Abstract Interpreter. It could be possible to work
around those errors too, but parsing errors is out of the scope of the Abstract Interpreter as they hint to an
external problem. We assume that a piece of code is parsed properly before starting the execution of the
code (just as Python does).

Every function defined in the concrete semantics must be rewritten as function that operates in the
Abstract Domain. For example, consider the function <prim-+-int>, which is defined as:

<prim-+-int<(i, j, G, H) := (G, H, i+j)
We need to define its Abstract Interpretation counterpart:

<prim-+-int>#(i, j, G#, H#) :=
if i = Top_Int or j = Top_Int
then (G#, H#, Top_Int)
else if i = Bot_Int or j = Bot_Int
then (G#, H#, Bot_Int)
else (G#, H#, i+j)

And as an example for the semantics of statements consider:

S#[Assign(var, val)](G#, H#) :=
let (G1#, H1#, ass) := E[var](G#, H#)

(G2#, H2#, rightval) := E[val](G1#, H1#)
-- Parsing error, probably. `rightval` must be a `Val#` if the parsing made no
-- mistake
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rval := if is_value#(rightval) then val else <Execution Halt>
in

match ass in
case Iden → (G2#[ass→rval], H2#)

case ((t, addr, o): Object#, ('index', val: PrimVal#)) →
let setindex# := get_prim_set_index#(t)
in setindex#(G2#, H2#, o, val, addr, rval)

-- Parsing error probably. This should never have happened
otherwise → <Execution Halt>

S#[Import(name)](G#, H#) :=
let freeaddr := get_free_addr(H#)
in

match name in
(”numpy”,) →
let (Module, arr, mod) := <numpy-mod>
in (G#['numpy'→freeaddr], H#[freeaddr→(Module, freeaddr, mod)])

(”numpy”, alias) →
let (Module, arr, mod) := <numpy-mod>
in (G#[alias→freeaddr], H#[freeaddr→(Module, freeaddr, mod)])

(”pytropos.hints.numpy”,) →
(G#[”pytropos.hints.numpy”→freeaddr],
H#[freeaddr→(Module, freeaddr, <numpy-hints>)])

(”pytropos.hints.numpy”, alias) →
(G#[alias→freeaddr], H#[freeaddr→(Module, freeaddr, <numpy-hints>)])

(nm,) →
(G#[nm→freeaddr], H#[freeaddr→(Module, freeaddr, ImTop)])

(nm,alias) →
(G#[alias→freeaddr], H#[freeaddr→(Module, freeaddr, ImTop)])

S[AnnAssign(var, hint, val)](G, H) :=
let (G1, H1, evaluatedhint) := E[hint](G, H)

(G2, H2, evaluatedhint) := E[hint](G1, H1)
hintval := if isvalue#(evaluatedhint) then evaluatedhint else <Execution Halt>

in S[Assign(var, val)](G1, H1)

let (G1, H1, ass) := E[var](G, H)
(G2, H2, evaledhint) := E[hint](G1, H1)
(G3, H3, rightval) := E[val](G2, H2)
compval := if is_value(rightval) then val else <Execution Halt>
hintval := if isvalue#(evaledhint) then evaledhint else <Execution Halt>
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-- if `hintval` is more precise than `compval` we replace it
rval := if hintval < compval then hintval else compval

in
... -- Continue as in S[Assign(...)]
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