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Aerospace systems are inherently stochastic and increasingly data-driven, thus hard to formally verify. Data-

driven statistical models can be used to estimate the state and classify potentially anomalous conditions of aerospace

systems frommultiple heterogeneous sensors with high accuracy. In this paper, we consider the problem of precisely

bounding the regions in the sensor input space of a stochastic system in which safe state classification can be formally

proven. As an archetypal application, we consider a statistical model created to detect aerodynamic stall in a

prototype wing retrofitted with piezoelectric sensors and used to generate data in a wind tunnel for different flight

states. We formally define safety envelopes as regions parameterized by z and τ, to respectively capture how model-

predictable observed sensor values are, and given these values, how likely the model’s accurate state classification is.

Safety envelopes are formalized in the Agda proof assistant, used to also generate formally verified runtimemonitors

for sensor data stream analyses in the Haskell programming language. We further propose a new metric for model

classification quality, evaluate it on our wing prototypemodel, and compare it to themodel restricted to two different

fixed airspeeds, and enhanced to a continuousGaussian process regressionmodel. Safety envelopes are an important

step in formally verifying precise probabilistic properties of data-drivenmodels used in stochastic aerospace systems

and could be used by advanced control algorithms to maintain these systems well within safe operation boundaries.

I. Introduction

A EROSPACE systems are increasingly being used in societal
applications, from bringing packages to customers, surveying

fields of crops, and monitoring wildfires and disaster areas, to urban
and advanced air mobility. Yet, to be truly autonomous as needed in
many of these applications, they lack self-awareness to enable self-
diagnosis and self-healing. One path forward for aerospace systems
to strengthen their resilience is to make them capable of sensing,
reasoning, and reacting in real time, which requires advanced control
and decision-making abilities [1]. This is to be aided by access to an
unprecedented amount of real-time data from onboard sensors, from
which the aeroelastic state, environmental conditions, and structural
conditions of aerospace systems [2,3] can be derived. Smart aerospace
systemswill be capable of detecting aerodynamic conditions (e.g., stall
or flutter) using data from a variety of sources including piezoelectric
sensors placed on the wings of an aircraft, satellite information, and
accurate models of their environment [1,4]. Dynamic data-driven
applications systems [5] use these data to enhance aerodynamic mod-
els updating them in real time and using them to determine the
aerodynamic performance of flight systems [6].
Because the failure of safety-critical aerospace systems can cause

harm to human life, the environment, or property [7], it is imperative
to guarantee the correct and safe behavior of every component in
these systems. As models grow and become more complex, their
input space dimensionality increases and it becomes a problem for
model checking because the time necessary to guarantee anyproperty
becomes intractable: thus the need to use statistical and bounded
model checking. Statistical model checking uses a simulation-based
approach to reasoning about stochastic systems such as aerospace
systems [8]. Krishnan and Lalithambika presented an example of
how to use bounded model checking for the analysis of onboard

computer code in the Promela language [9]. Statistical model check-

ing can only prove probabilistic properties typically specified in a

stochastic temporal logic. Bounded model checking is typically used

to find counter-example traces that illustratewhen a property does not

hold, so it is inherently incomplete. Formal verification using theo-

rem proving guarantees the correctness of a system, but only if the

system can be fully described. There has been recent work in the

formal verification community on complex statistical aerospace

systems. The VeriDrone project [10] builds upon differential

dynamic logic [11] to formally verify the properties of hybrid systems

[12]. Abed et al. [13] formally verified the continuous dynamics that

govern the behavior of uncrewed aerial vehicles, for which they

formalized the differential equations and dynamics in higher-order

logic (HOL). Cohen et al. [14] formally verified the ellipsoid method

used for receding horizon control written in the C language. They

modified the algorithm to prevent numerical instability.

We introduce safety envelopes as boundaries in the system’s input

space where we can formally verify parameterized probabilistic

statements on the accuracy of state estimation and classification by

data-driven models. In the same manner that flight performance

envelopes define a region where it is safe for an aircraft to operate,

safety envelopes define regions where a data-driven systems' classi-

fication is correct according to z-predictability and τ-confidence.
Note that z-predictability¶ formalizes the intuition that “the data is

captured by the model”; and τ-confidence formalizes the intuition

that “the state of the system can be accurately determined from the

data.” The goal of safety envelopes is to reduce type I and type II

errors when estimating the classification of a value by defining clear

boundaries for the state of a system, thus defining safety regions

where the system should be constrained to operate. Safety envelopes

can only guarantee behavior for stochastic systems that follow the

underlying statistical assumptions on the data, e.g., Gaussian distri-

butions. Special runtime programs called monitors [15] can analyze

real-time data against a safety envelope and determine whether the

system is in a distinctly safe state orwhether an action should be taken

to steer the system away from an unsafe state.

The contributions of this paper include the following:
1) The first contribution is the definition of safety envelopes

as system input regions where probabilistic statements have been
formally verified for a statistical data-driven model. Since safety
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envelopes are parameterized by z and τ, metrics for model coverage,
accuracy, error, and quality, are also introduced.
2) The second contribution is formalization (i.e., specification and

proof) of four probabilistic properties as well as monitor generation
using the Agda proof assistant [16] and the Haskell programming
language.
3) The third contribution is the application of safety envelopes to

the safety-critical aviation problem of stall detection using data from
piezoelectric sensors embedded on a wing’s skin. Three classes of
Gaussian-based models are considered: univariate, bivariate, and
univariate extended with artificial data by Gaussian process regres-
sion models (GPRMs).
The rest of this paper is organized as follows. Section II intro-

duces our data-driven flight model, including wing piezoelectric
sensor experiments, data collection, and the preprocessing strategy.
Section III defines the safety envelopes and presents quality metrics
for choosing different parameters used in the safety envelopes.
Section IV presents proofs, an example of how the proofs are
formally verified in Agda, and the code generation of runnable code
from the theory. Section V contains the evaluation of safety enve-
lopes under the three different scenarios of univariate data, bivariate
data, and GPRM-generated data for the problem of stall detection.
Finally, Sec. VI discusses related work, and Sec. VII concludes the
paper and includes potential future work.

II. Data-Driven Flight Model

The complete experimental assessment and evaluation of thiswork
is based on a prototype composite uncrewed aerial vehicle wing with
embedded sensing capabilities. The prototype wing was designed,
constructed, and tested at Stanford University (Fig. 1); for a detailed
presentation of thewing, see Refs. [2,3]. Thewing design is based on

the cambered SG6043 high lift-to-drag ratio airfoil with a 0.86 m

span, 0.235 m chord, and an aspect ratio of 7.32. The wing was

outfitted with 32 distributed piezoelectric lead zirconate titanate

(PZT) sensors (PZT disk was 3.175 mm in diameter) and 24 strain

gauges to measure its dynamic response. The prototype composite

wing was tested in the open-loop low-turbulencewind-tunnel facility

at Stanford University. A series of wind-tunnel experiments was

conducted for various angles of attack (AOAs) and freestream veloc-

itiesU∞. For each AOA, spanning the range from 0 up to 18 degwith

an incremental step of 1 deg, data were sequentially collected for all

velocities within the range of 9 to 22 m∕s (with a step of 1 m∕s). The
aforementioned procedure resulted in a grid of flight state datasets

corresponding to 266 different experiments covering the complete

range of the considered flight states. For each experiment, the vibra-

tion response was recorded at different locations on the wing via

the embedded piezoelectric sensors (initial sampling frequency of

fs � 1000 Hz, and initial signal bandwidth of 0.1–500 Hz). The
signals were recorded via a National Instruments X-series 6366 data

acquisition module featuring eight 16-bit simultaneously sampled

analog-to-digital channels. The initial signals were low-pass filtered

(Chebyshev type II 12th order; cutoff frequency of 80 Hz) and

subsampled to a resulting sampling frequency of fs � 200 Hz.
To investigate the response of the wing under varying AOAs and

airspeeds as well as to determine its flight state, a statistical signal-

energy analysis was performed for the different sensors. The initial

signal of 91 s (N � 91;000 samples) was split into signal windows of

1 s each. Figure 2 presents indicative piezoelectric signals under

different airspeeds and angles of attack. Then, for each signal win-

dow, the mean value and the standard deviation of the signal energy

(time integration of the squared signal V2 within the time window)

were estimated. The goalwas to correlate the signal energy in the time

Fig. 1 The composite wing and the wind-tunnel setup used to collect data under different flight states.

Fig. 2 Indicative signals obtained from a piezoelectric sensor under various angles of attack: a) freestream velocity of U∞ � 11 m∕s (top subplot), and
b) freestream velocity of U∞ � 17 m∕s (bottom subplot).
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domain with the airflow characteristics and aeroelastic properties in

order to identify and track appropriate signal features that can be used

for the subsequent stall detection of the wing under various flight

states. Based on the results of this study [2,3], it was observed that the

vibration data for all the considered states, under the aforementioned

preprocessing, follow a normal distribution, and thus represent a

single flight state with a normal distribution N �μθ; σ2θ�, where μθ
corresponds to themean and σθ corresponds to the standard deviation
of the flight state θ. Therefore, it is possible to compute the multi-

variate joint normal distributions for the wing sensors under the

considered flight states.

Under certain flight states at higher angles of attack, the lift of the

wing would decrease below its weight, therefore leading to an

aerodynamic stall. The ground truth for the different flight states

(i.e., whether thewing exhibits stall or not)was obtained from a series

of computational fluid dynamics (CFD) simulations for the same

wing design and considered flight states, where the occurrence of

stall or no stall was established (for details, please see Refs. [2,3]). In

addition, during the experiments, the wing base was mounted on a

load cell to measure the three forces and three moments (6 deg of

freedom) acting on the wing. The load cell results were in agreement

with the CFD-based analysis in indicating the loss of lift, and thus the

stall of the wing, for the different flight states.

III. Safety Envelopes

Suppose a sensor fails midflight and, instead of sounding an alarm,

the control system assumes that the sensor is producing accurate data.

A human operator or logically redundant system [17] could catch

such a mistake and reverse an undesirable action from the control

system, but the risk of catastrophic failure is not out of the question;

e.g., Air France 447, Tuninter 1153, and Boeing’s 737 Max 8 acci-

dents were initiated by such sensor failures [18]. Safety envelopes are

dynamic regions of instrument measurements that can be considered

correct. If a sensor failed and the data that it produced did not match a

model, then the data would be outside of its safety envelope. In case

the sensor is producing correct data, the question becomes whether

these data should ring an alarm or be used passively by the control

system. These scenarios are captured by the following two inter-

linked questions:
1) Is the data predictable by the model (z-predictability)?
2) What is the most probable state of the system given the data

(τ-confidence)?
The goal of safety envelopes is to determine valid system input

regions and their corresponding flight states, e.g., to determinewhether

a measurement from piezoelectric sensors corresponds to a stall state

and to nothing else with very high probability. For this, the values are

compared towhat a model can sensibly generate (z-predictability) and
from which state it is most likely produced (τ-confidence).

A. Univariate Safety Envelopes for Stall Detection

To exemplify safety envelopes, we present the case of stall detec-

tion using the signal energy of a single piezoelectric sensor. The input

to signal-energy safety envelopes is a signal energy x ∈ R and its

output is one of three classes: stall, no stall, or uncertain. Figure 3

shows how signal-energy safety envelopes can be used to detect stall

in a live system. In the figure, z-predictability corresponds to the

question “Can [the signal] be predicted by the model?” It is repre-

sented by the green-colored region. The τ-confidence corresponds to
the question “Can [the signal] be reliably classified?” It is represented

by the light blue and orange regions.
A signal-energy model M for stall detection consists of a triple

hΘstates; fN �μθ; σ2θ�g; Cstalli, where Θstates are the possible states of

the flight system (e.g., all states where angles of attack are natural

numbers for an aircraft flying at 15 m∕s); fN �μθ; σ2θ�g are a family

of Gaussian random variables for each state θ ∈ Θstates that encode

the distributions of signal energy for each state; and Cstall∶Θstates →
fstall;no-stallg is a ground-truth tagging function that deter-
mines whether a given flight state is in stall or not.We assume every

state is equally likely.
Note that z-predictability determines whether a signal could likely

be generated by a model. A signal energy that is not likely to be

generated by the model is said to be outside of the safety envelope.

Assuming that the signal energy preprocessed from a piezoelectric

sensor follows a normal distribution, the z-predictability is defined

for a signal as follows:
Definition 1.Signal-energy z-predictability: Given a signal-energy

model M � hΘstates; fN �μθ; σ2θ�g; Cstalli, an energy signal x is z-
predictable if, and only if, there exists a flight state θ ∈ Θstates in

the modelM such that

μθ − zσθ < x < μθ � zσθ

where μθ and σθ are the parameters of the normal distribution that

describes the signal energy for the flight state θ.
The green regions in the top row of each plot in Fig. 4 illustrate the

z-predictability given different airspeeds and z parameters.
Note that the τ-confidence determines fromwhich state (stall or no

stall) the signal energy was generated. If the state cannot be deter-

mined with enough confidence τ, then it is said that the signal energy
is outside of the safety envelope (and taggedwith uncertain). For this,

we first define** a classification function based on a threshold param-

eter τ:
Helper definition 1. Signal-energy classification function: Given a

signal-energy model M � hΘstates; fN �μθ; σ2θ�g; Cstalli, an energy

signal x can be classified in one of three categories as

Fig. 3 Detection of stall (or its absence) using signal-energy safety envelopes.

**A helper definition is meant to be used for the scaffolding of important
definitions (named simply “definition”).
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Kstall�M; τ; x� �

8>><
>>:
stall P�stalljX � x� ≥ τ

nostall 1 − P�stalljX � x� ≥ τ

uncertain otherwise

whereX is the randomvariable for the energy signal, τ ∈ �0.5; 1�, and
P�stalljX � x� is the conditional probability of stall given X � x.
The conditional probability of stall can be computed by the

equation

P
θ∈Θpdfθ�x�P�stall � truejθ�P

θ∈Θ pdfθ�x�

where pdfθ�x� is the probability density function for the distribution
N �μθ; σθ�, and the conditional probability P�stalljθ� is deter-

mined by the tagging function Cstall as one if Cstall�θ� � stall
and zero otherwise.
The signature of Kstall is

M × �0.5; 1� × R → fstall;nostall;uncertaing

Note that τ is called the threshold of classification and indicates the
level of confidence wanted from the classification or, alternatively,

1 − τ indicates the risk associated with misclassification [19]. The

conditional probability of stall is derived from Bayes’s theorem. A

step-by-step derivation can be found in the Appendix.
The solid, black curve in the middle row of each plot in Fig. 4

shows the probability of stall for each signal-energy value. The blue

regions on the left sides correspond to the no-stall class, whereas the

orange regions on the right sides correspond to the stall class; the

unshaded regions in between correspond to the uncertain class.

Shaded regions are the places where we are confident of the classi-

fication with τ certainty.
Definition 2. Signal-energy τ-confidence: Given a signal-energy

modelM and a signal energy x ∈ R, a classificationKstall�M; τ; x� �
k is called τ-confident if, and only if, k ≠ uncertain.
Safety envelopes are the regions where a signal energy is both

z-predictable and τ-confident, as exemplified in the following

definition:

Definition 3. Signal-energy safety envelopes: Given a signal-

energy model M, z ∈ R�, and τ ∈ �0.5; 1�, a safety envelope

se�M; z; τ� for stall detection is the region X ∈ P�R� where the

following probabilistic statement holds: for all x ∈ X, x is z-predict-
able and Kstall�M; τ; x� is τ-confident.
The shaded regions on the bottom row of each plot in Fig. 4 are the

safety envelopes (given the z and τ parameters) for the model derived

by two different fixed airspeeds, and a third model is derived from all

airspeeds.

Notice that the selection of parameters z and τ influences the size
and range of the safety envelopes. A larger z increases the range of z-
predictability, and thus data from a larger region of the signal-energy

space are accepted. Avery large z allows us to accept extremely rare

events (outlier data), which include potentially unsafe data. A larger τ
(closer to one) decreases the region defined by the τ-confidence. In
general, the larger the safety envelopes, theweaker the formal proper-

ties associated to them; whereas the smaller the safety envelopes, the

stronger the properties we can formally prove about them. The best

parameters are application specific and dependent on the quality of

the data and their ability to discriminate between flight classes. We

present in Sec. III.C several metrics to determine the quality of data-

driven models, and thus determine the best safety envelope param-

eters for a given application.

Error
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Coverage
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Coverage
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Fig. 4 Safety envelopes (bottom row) as the intersection of z-predictability (top row) and τ-confidence (middle row) for airspeeds of 6 and 20 m∕s as well
as all flight states: a) z � 1 and τ � 80%; and b) z � 2 and τ � 99%.
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B. Generalized Safety Envelopes

The concepts that make up the signal-energy safety envelopes, z-
predictability, and τ-confidence can be easily generalized tomultiple-
input data dimensions.We present one such generalization as models
onmultivariate-Gaussian distributions. This generalization allows us
to use data from multiple correlated inputs such as the signal energy
frommultiple piezoelectric sensors as demonstrated in Sec. V.C. But
first, we present some supporting definitions that serve as building
blocks for a more rigorous definition of safety envelopes.
A collective-probabilitymodel contains all possible states a system

can be in. Each state of the system is given by experimental data or by
theory and follows a distribution. Each state is assumed to be inde-
pendent of the others and has some non-zero probability of occurring.
As in the case of stall detection, we are often not interested in
determining the state of the system (flight state) but rather a condition
associatedwith it (stall). For this, a state is associatedwith a condition
via a tagging function.
Helper definition 2. Collective-probability model: A collective-

probability modelM is a tuple hΘ;Ξ; fXθg; pΘ; LΘ; CΘi where 1) Θ
is a finite set representing the possible states of the system; 2) Ξ is an
arbitrary set representing the space ofmeasurements from the system;
3) fXθg is a family of random variables, where Xθ∶Ξ → R for θ ∈ Θ
(one per each possible state); 4) pΘ is a probability density function,
which represents the probability of the system being in a given state;
5) LΘ is a set of labels, which correspond to the final output of the
classification system; and 6)CΘ∶Θ → LΘ is the ground-truth tagging
function.
The signal-energy model from Sec. III.A hΘstates; fN �μθ; σ2θ�g;

Cstalli can be represented as the collective-probability model

Mstall � hΘstates;R
� ∪ f0g; fN �μθ; σ2θ�g; pstates;

fstall;no-stallg; Cstalli
where 1) Θ � Θstates is a set of flight states (e.g., the flight states for
angle of attack of 1 deg and airspeeds between 6 and 20 m∕s),
2) Ξ � R� ∪ f0g is the measurement space for the energy signal,

3) fXθg � fN �μθ; σ2θ�g is the family of Gaussian random variables

that determine how the signal energy behaves at one given state,
4) pΘ � pstates � �1∕jΘstatesj� is the uniform probability density
function that encodes the probability of a state to occur,
5) LΘ � fstall;no-stallg is the set of tags, and 6) CΘ �
Cstall�θ� is the tagging function.
Safety envelopes are regions defined by a probabilistic statement,

but what precisely does probabilistic statement mean?
Helper definition 3. Probabilistic statement: Given a collective-

probability model M � hΘ;Ξ; fXθg; pΘ; LΘ; CΘi and a parameter
space Π, a probabilistic statement S over M is a predicate with para-
meters π ∈ Π and x ∈ Ξ, i.e., S∶M × Π × Ξ → ftrue;falseg.
Given a signal-energy model Mstall, let us define an example

probabilistic statement Sdistinct as

Sdistinct�Mstall;π; x� � ∃θ ∈ Θ∶P�θjX � x� ≥ π ∧

∀θ ∈ Θ∶θ 0 ≠ Θ⇒ �P�θ 0jX � x� < π�

where P�θjX � x� is the probability that the aircraft is in the state θ
given a signal energy of x, andΠ � �0; 1� is the confidence threshold.
Sdistinct encodes the question of whether a signal energy x can be used
to discriminate a unique flight state that generated it. For example,
Sdistinct�Mstall; 0.99; 3.8� corresponds to the predicate of “Can the
flight state that generated a signal of 3.8 be unequivocally determined
with a certainty of 99%?”.
Next, we define a “region of interest,” which is the space under Ξ

where a probabilistic statement is true: for example, the regionwhere
we can guarantee that the sensor produces adequate data (z-predict-
ability).
Helper definition 4. Region of interest: Given a collective-

probability modelM � hΘ;Ξ; fXθg; pΘ; LΘ; CΘi, a parameter space
Π, and a probabilistic statement S over M, a region of interest is the
region in Ξ under which S holds with parameters π; i.e., a region of
interest (RI) is the region defined by

RI�M;S; π� � fx ∈ Ξ∶S�M; π; x� � trueg

with one per tag.
The region of interest for Sdistinct with parameter π � 0.99 is

a subset of R for which Sdistinct�Mstall; 0.99; x� is true, i.e.,

RI�Mstall; Sdistinct; 0.99� ∈ P�R�.
Figure 5 presents two regions of interest for a collective-probability

model with two states (Gaussian distributions). The region on the left

(blue line at the bottom) corresponds to the probabilistic statement of

“The value falls in the interval �−1.6; 1�.” The region on the right

(red line) corresponds to “The value falls in the interval �1.5; 4.6�.”
Notice that these example probabilistic statements lack any parameters.
With everything in place, let us define a multidimensional gener-

alization for the signal-energy model from Sec. III.A:
Helper definition 5. Collective-Gaussian stall model: A collective-

Gaussian stall model is the collective-probability model for stall

classification

Mstall � hΘstates;R; fN �μθ;Σθ�g; pstates;

fstall;no-stallg; Cstalli

where1)Θ � Θstates is the set of flight configurations forwhich there are

data, 2) Ξ � R is the energy signal space, 3) Xθ � N �μθ;Σθ� is a
multivariate-normally distributed random variable for the flight con-

figuration θ ∈ Θstates, 4)pΘ � pstates is the probability density function

that determines the probability pstates�θ� for a flight configuration θ ∈
Θstates to occur, 5)LΘ � fstall;no-stallg is the set of labels, and
6) CΘ � Cstall∶Θ → L is a tag function for each flight state.
Now, we can formally define the z-predictability, which encodes

how well the data being given adjust to the (flight) model.
Definition 4. z-predictability: Given a collective-Gaussian stall

model

Mstall � hΘstates;R; fN �μθ;Σθ�g; pstates;

fstall;no-stallg; Cstalli

and a parameter z ∈ Π � R�, z-predictability is defined as the

probabilistic statement:

Sz−pred�Mstall; z; x� � ∃θ ∈ Θstates∶DM�μθ;Σθ; x� < z

where

DM�μθ;Σθ; x�

corresponds to the Mahalanobis distance, and it is equal to

��������������������������������������������
�μθ − x�TΣ−1

θ �μθ − x�
q

The Mahalanobis distance for univariate Gaussian distributions

reduces to the z-score region of the distribution, which is proven in

Theorem 1.

−4 −2 0 2 4 6

0.0

0.1

0.2

0.3

0.4

75.90% accuracy - 7.14% error - 83.04% coverage

accuracy

or - 83.04% coverage

accuracy

error

Fig. 5 Representation of accuracy, error, and coverage where the
regions of interest are given by the blue and red intervals.
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The soft green region on each plot in Fig. 4 shows the z-predict-
ability region for three different models and two values of z. The first
two models contain all flight states corresponding to airspeeds of 6

and 20 m∕s, respectively, and angles of attack in the ranges of α ∈
�1; 18� and α ∈ �1; 12�, respectively.
Next,we define a generalization for the τ-confidence using as input

a collective-probability model. We introduce a τ (threshold) depen-
dent classification function:
Helper definition 6. Conditional classification function with

regard to a model: Given a collective-probability model M �
hΘ;Ξ; fXθg; pΘ; LΘ; CΘi, the conditional classification function is

defined as

Kcond�M; τ; x� �
�
tag P�tagjX � x� ≥ τ

uncertain otherwise

where τ ∈ �0.5; 1�, x ∈ Ξ, X is the random variable for the values

measured on Ξ, and P�tagjX � x� is the conditional probabi-

lity for the class tag given x. The signature of Kcond is

M × �0.5; 1� × Ξ → LΘ ∪ funcertaing.
The conditional probability P�tagjX � x� can be computed by

the equation

P
θ∈Θpdfθ�x�pΘ�θ�P�tagjθ�P

θ∈Θ pdfθ�x�pΘ�θ�

where pdfθ�x� is the probability density function for the distribu-
tion Xθ, and the conditional probability P�tagjθ� is determined

by the tagging function CΘ as one if CΘ�θ� � tag and zero

otherwise.
The probability of stall (for a univariate collective-Gaussian stall

model) can be seen in the middle row of Figs. 4a and 4b. The black

curve corresponds to the probability function P�stalljX � x�,
which indicates the probability of the wing being in a stall condition

given a single measurement of the signal energy. A derivation of

P�stalljX � x� can be found in the Appendix. The classification
region can be seen at the bottom of the middle row in Fig. 4, for τ �
80 and 99%. The τ-confident region is the union of both colored

regions (light blue and orange), where light blue indicates no stall and

orange indicates stall.
We have all that is needed for a multivariate signal-energy safety

envelope definition.
Definition 5. Given a collective-probability modelM and a meas-

urement x ∈ Ξ, a classification K�M; τ; x� � k is called τ-confident
if, and only if, k ≠ uncertain.
Safety envelopes encode two properties at the same time: whether

a value is captured by amodel or can be predicted by it, andwhether it

is likely correctly classified:
Definition 6. Safety envelopes: Given a collective-Gaussian stall

model

Mstall�hΘstates;R;fN �μθ;Σθ�g;pstates;fstall;no-stallg;Cstalli

and �z; τ� ∈ R� × �0.5; 1�, a safety envelope (SE) is the region of

interest defined by the probabilistic statements:
1) The no-stall probabilistic statement: “A signal-energy

value x is z-predictable, and the no-stall classification is
τ-confident”:

Snostall�Mstall; �z; τ�; x�
� Sz−pred�Mstall; z; x� ∧ K�Mstall; τ; x� � no-stall

2) The stall probabilistic statement: “A signal-energy value x is z-
predictable and the stall classification is τ-confident”:

Sstall�Mstall; �z; τ�; x� � Sz−pred�Mstall; z; x�
∧ �K�Mstall; τ; x� � stall�

The last row of Figs. 4a and 4b show the safety envelopes derived
from three different data-driven models with varying z scores and τ
thresholds.For easily separable stall/no-stall conditions, such as 6 m∕s,
the safety envelope is the same as the region defined by z-predictability;
inother cases, the region defined by the τ-confidence reduces the region
described by z-predictability or vice versa. Notice that when safety
envelopes are applied to a model where all airspeeds and AOAs have
been taken into account, the safety envelopes become significantly
smaller. Thismeans that it is not possible to assert with high confidence
whether a signal-energy value entails a stall condition. In the right
column of Fig. 4b, the safety envelopes do not include any signal with
values from around one until 12. In contrast, if we know the airspeed to
be 6 m∕s, a signal of one likely corresponds to a stall; whereas for an
airspeed of 20 m∕s, a signal of one likely corresponds to no stall.
Safety envelopes can be generalized along other dimensions such

as using a sample of measurements instead of a single measurement;
allowing the probability of a state to occurpΘ to change depending on
the input (which can be accomplished by defining a pΘ as a prior, as
well as using P�Θjx� inside the τ-confidence instead); or replacing
the assumption of normality by defining a custom τ-confident proc-
ess. It is left to the designer of the model to determine the best z-
predictability and τ-confidence definitions for their problem.

C. Metrics for Safety Envelopes

In this section, we explore a variety of metrics for safety envelopes
that can be used to find the best parameters for a given model and to
determine their quality. Metrics allow us to determine the qualities of
different models, and thus compare them. A simple metric is to
determine how many data points fall within a region of interest:
Definition 7. Coverage: Given a collective-probability model

M � hΘ;Ξ; fXθg; pΘ; LΘ; CΘi, a parameter space Π, and a probabi-
listic statement S overM, coverage is the cumulative probability that
falls within the region of interest; i.e.,

coverage�M;S; π� �
X
θ∈Θ

pΘ�θ�P�x ∈ RI�M;S; π��

with parameters π ∈ Π.
The simplest useful model that can be expressed as a collective-

probabilitymodel is onewith two classes. Figure 5 shows an example
model with two states and two tags with the following arguments:

Meg � hfblue;redg;R; fXblue; Xredg; peg; fblue;redg; Cegi

where Xblue � N �0; 12�, Xred � N �3; 1.42�, peg�x� � 1∕2 is the
discrete uniform probability density function representing that either
blue or red can occur with equal probability, and Ceg�θ� � θ is the

identity function. Two regions of interest are presented for two
probabilistic statements:

Sblue�M; �y1; y2�; x� � y1 < x < y2

and

Sred�M; �z1; z2�; x� � z1 < x < z2

Notice that we need four parameters to define the probabilistic
statements and are independent of the data. The example in Fig. 5
showcases the regions for RI�M;Sblue; �−1.6; 1�� and RI�M;Sred;
�1.5; 4.6��. The coverage of the combined regions

�RI�M;Sblue; �−1.6; 1�� ∪ RI�M;Sred; �1.5; 4.6���

is 83.04%.
Coverage does not take into account the correct or incorrect

classification of a data point. We want a metric that can tell us the
quality of the classification. For this, let us analyze from the first
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principles what the possible metrics for safety envelopes are. A

metric, in the area of statistical classification, is a value that relates

a classification procedure to its performance given some data. A

metric is the combination of four possible classification outcomes,

namely, false positives (FPs), false negatives (FNs), true positives

(TPs), and true negatives (TNs). (A confusion matrix is an n × n
matrix that encodes all possible classification outcomes for a classi-

fication problem with n classes. Predicted values are assigned to

rows, and actual values correspond to columns.) These outcomes

come from the fact that there are two possible classes and two

possible estimations. Unfortunately, safety envelopes do not partition

the space in only two regions (positive and negative regions) but,

instead, they partition the space into three regions: positive, negative

and “not inside safety envelope.” An extended confusion matrix††

showing all possible six classification outcomes is presented in

Table 1.
We would like to find a safety envelope that accepts as few

mistakes as possible while covering as large a safe region as

possible. In other words, we expect that safety envelopes take

1) as few unsafe points as possible (FNs + FPs)/total, i.e., error;

2) as many safe points as possible (TPs + TNs)/total, i.e., accuracy;

and 3) as many points as possible (TPs + TNs + FNs + FPs)/total,

i.e., coverage.
Notice that in contrast to machine learning practice, where metrics

are computed given a dataset, we are interested in computing the

metrics from a model: a collective-probability model.
The expected proportion of safe points, (TN + TP)/total, is cap-

tured by the following:
Definition 8. Accuracy: Given a collective-probability model

M � hΘ;Ξ; fXθg; pΘ; LΘ; CΘi, a parameter space Π, and a set of

probabilistic statements fSlg overM for each l ∈ LΘ, accuracy is the

cumulative probability that falls within the region of interest and is

correctly classified, i.e.,

accuracy�M; fSlg; π� �
X
l∈LΘ

� X
θ∈CΘ�Θ��l

pΘ�θ�P�x ∈ RI�M;Sl; π��
�

whereCΘ�Θ� � l corresponds to the set fθ ∈ Θ∶CΘ�θ� � lg, which
is the set containing all states that are tagged with l.
In Fig. 5, we can see that accuracy corresponds only to the regions

correctly classified: red with red and blue with blue. Notice that we

can have the same accuracy for different regions of interest (compare

Fig. 5 with Fig. 7).
The expected proportion of unsafe points, (FN + FP)/total, is

captured by the following:
Definition 9. Error: Given a collective-probability model

M � hΘ;Ξ; fXθg; pΘ; LΘ; CΘi, a parameter space Π, and a set of

probabilistic statements fSlg overM for each l ∈ LΘ, the error is the

cumulative probability that falls within the region of interest and its

incorrectly classified; i.e.,

error�M; fSlg; π� �
X
l∈LΘ

� X
θ∈CΘ�Θ�≠l

pΘ�θ�P�x ∈ RI�M;Sl; π��
�

where CΘ�Θ� ≠ l corresponds to the set fθ ∈ Θ∶CΘ�θ� ≠ lg, which
is the set containing all states that are not tagged with l.

In Figs. 5–7, the error corresponds to the stripped areas. It is clear
that

coverage�M; fSlg; π� � accuracy�M; fSlg; π� � error�M; fSlg; π�

This means that we can have two different regions of interest with
the same accuracy but different errors or different combinations of
accuracy and errors that give rise to the same coverage.
Notice that high accuracy does not mean small errors. It depends

on howmany points are being discarded by the classification. For this
reason, we have to define a metric that encodes our desire for a small
error and high accuracy, namely, the following:
Definition 10.Model quality: Given a collective-probabilitymodel

M � hΘ;Ξ; fXθg; pΘ; LΘ; CΘi, a parameter space Π, a set of prob-
abilistic statements fSlg overM for each l ∈ LΘ, and aweightw ∈ R,
the combination of the accuracy and error is

quality�M; fSlg; π; w; x� � accuracy�M; fSlg; π; x�
× �1 − error�M; fSlg; π; x��w

The model quality increases as accuracy does, and it decreases as the
error increases (1 − error). Thew parameter is theweight given to the
error. The larger the weight, the costlier the error becomes. From
observations that can be found in the SupplementalMaterial, we have
found that an error ofw � 10 discourages safety envelopes with “too
much” error while enforcing a good accuracy.

IV. Theorems and Formal Proofs

Safety envelopes are to be deployed as an external module to a
control system in order to guarantee safe input data. This external
module is called amonitor (in runtimeverification [15]), and it is to be
generated from the safety envelopes in an automatic manner. It is of
integral importance that safety envelopes are correctly implemented
and guaranteewhat they are designed for; thus, formal proofs of their
correct behavior must accompany them. Figure 8 presents safety

Table 1 Extended binary confusion matrix
for safety envelopes

Positive (P) Negative (N)

Positive estimation TP FP
Negative estimation FN TN
Not in SE Missed P Missed N

−4 −2 0 2 4 6
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0.3

0.4

89.53% accuracy - 10.37% error - 99.89% coverage

accuracy

ror - 99.89% coverage

accuracy

error

Fig. 6 Representation of accuracy, error, and coverage as in Fig. 5.
Larger intervals mean higher accuracy and coverage but also larger
error.

−4 −2 0 2 4 6
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0.2

0.3
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75.90% accuracy - 3.71% error - 79.61% coverage

accuracy

or - 79.61% coverage

accuracy

error

Fig. 7 Representation of accuracy, error, and coverage as in Fig. 5.
Accuracy can be kept as in Fig. 5 while the error is reduced, thanks to a
careful tuning of the intervals.

††A false positive is also known as a type I error. A false negative is a type II
error.
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envelopes andmonitor placementwithin the production chain and the

control loop of a control system [20].

A. Theorems

The following are theorems that we proved mechanically in

Agda‡‡ to guarantee the expected behavior of safety envelopes. (Full
implementation and the proofs can be found in the Supplemental

Material.) The first property to be mechanically proven corresponds

to the relationship between the z-predictability for univariate normal
distributions and the z score:
Theorem 1: In the case of univariate normal distributions, the

z-predictability condition DM�μθ; σ2θ; x� < z, where DM is the

Mahalanobis distance, reduces to μθ − zσθ < x < μθ � zσθ, which
is the prediction interval with a z score of z.
Given a signal-energy safety envelope, we can determine the

connection between z-predictability and the signal input as follows:
Theorem 2: Given a signal-energy model Mstall � hΘstates;

fN �μθ; σ2θ�g; Cstalli, an energy signal x ∈ R is z-predictable if, and
only if, there exist θ ∈ Θstates such that x ∈ �μθ − zσθ; μθ � zσθ�; i.e.,
x falls within one of the prediction intervals.
We can prove that a (univariate) signal-energy τ-confidence is a

special case of τ-confidence:
Theorem 3:Given a signal-energymodelMstall � hΘstates; fN �μθ;

σ2θ�g; Cstalli and τ ∈ �0.5; 1�, a classificationKstall�M; τ; x� � k for an
observation x is τ-confident if, and only if, P�kjx� ≥ τ.

As a consequence of Theorems 2 and 3, we can guarantee that

signal-energy safety envelopes are in fact (general) safety envelopes:

Theorem 4: Given a signal-energy model Mstall � hΘstates;
fN �μθ; σ2θ�g; Cstalli, τ ∈ �0.5; 1�, and z ∈ R�, an energy signal x
belongs to safety envelope RI�Mstall; Snostall ∧ Sstall; �z; τ�� if, and

only if, x is z-predictable and τ-confident.

B. Formal Proofs and Monitor Generation

We have used the Agda proof assistant to guarantee that

the implementation of safety envelopes follows its expected

behavior and the theorems presented before. Additionally, from the

Agda code, we can generate verified Haskell code, which can be

compiled into binary and run separately. Thus, we show a path to

implement monitors (see Fig. 8). Figure 9 displays an excerpt of

the formalization where signal-energy z-predictability is defined (see
Definition 1):

Once safety envelopes are formally defined, we can prove proper-

ties on them. Such is the case of Theorem 2, which is proven by the

Agda code shown in Fig. 10.

From the Agda formalization, we have generated a monitor. A

monitor is a computer program to observe a stream of data to

evaluate its consistency and correctness. The interested reader can

check the Supplemental Material, where the full proofs and an

extended explanation of the code found in Fig. 10 can be found.

The generated monitor checks when a stream of signal-energy

measurement, encoded as a floating-point number, is z-predictable.
The resulting executable can process a continuous stream of

floating-point numbers and outputs a stream of Booleans deter-

mining the z-predictability of each value. Figure 11 displays a
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control systems
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(with proofs)

is the

base for

informs

inform

Online

Control

system

Monitor

Live system

Operator

deploys as

generates

alert/

guide

acts on

sends

data

sends

data

notifies

Fig. 8 Safety envelopes and monitors to check for the correct behavior of a system. Adapted from Ref. [20].

Fig. 9 Excerpt of the formalization of z-predictable as Agda code.

Fig. 10 Agda code for proof of Theorem 2. Any represents existential quantification, i.e. “there exists”.

‡‡The repository titled “safety-envelopes-sentinels” (version 0.1.2.0) can
be found online at http://wcl.cs.rpi.edu/pilots/fvdddas [retrieved 11 Novem-
ber 2022].
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(frankly obscure) piece of Haskell code generated from z-predict-
able on Agda.
With the help of some wrapping functions and code, the function

can be called like any other function in Haskell. The implementation
and proofs occupy a total of 980 lines inAgda. From theAgda code, a
total of 1160 lines of Haskell code were generated.

V. Experimental Results

A. Signal-Energy Safety Envelopes

As explained in Sec. II, to evaluate safety envelopes, we have
constructed multiple models from wind-tunnel experiments. Each
model is composed of different flight state distributions.We consider
three test cases: an easily separable casewhere only flight states for an
airspeed of 6 m∕s are considered, a slightly less separable case with
an airspeed of 20 m∕s, and a casewhere we assume no knowledge of
airspeed (all airspeeds and AOA flight states are taken into account).
The exploration of the optimal τ and z for each of the three cases can
be seen in Fig. 12. In all cases, the value of the metrics plateau as z
increases outside, further out to the right. Note that z is restricted to
the range of �0; 0.4� in Fig. 12c in order to display a readable plot.
As it can be seen in Fig. 12, increasing τ reduces accuracy and error

irrespectively of z. Because accuracy and error change at slighly
different rates, quality does not consistently decrease as τ grows, as
clearly seen in Figs. 12b and 12c. For a given z, there is a τ that
maximizes quality. If we analyze z by fixing τ, we will notice that
accuracy and error grow as z does. But in contrast to τ, there is
generally no value of z that maximizes accuracy or quality, or
minimizes error. This means that the user has to choose a value of
z, from which an effective τ can be found. As for what value of z to
choose, we recommend a value as small as possible that maintains a
high model quality. That is because larger z values (eg, > 3σ) imply
that uncommon events will be treated as predictable when their
chance of being so is small.
Choosing z and τ carelessly could lead us to safety envelopewhich

are potentially unsafe. For example, make τ � 0.5001 and z � 9. In
this case, we would capture in the safety envelope values that are
consistent to either stall or no stall distributions and have low con-
fidence of being correctly classified. This might not be a big problem
if the distributions are many σ apart, but it is a big problem if the
model is not highly separable. In general, itmakes sense to evadevery
low values of τ (smaller than 0.65) as well as very high values for z
(larger than 3).
In Fig. 13,wecan see the safety envelopes definedwith the optimum

z and τ obtained from the exploration shown in Fig. 12. As mentioned
before, larger w values penalize errors higher in the model quality
metric. For easily separable data, there are smaller error rates, which
lessen the impact ofw. For non-easily separable data, as in the case of

the model that contains all possible flight states at once, the model
quality suffers drastically, since its error is relatively high. This shows

that the quality of the signal-energymodel for stall detection decreases
significantly when no airspeed information is given.

B. GPRMs Applied to Safety Envelopes

GPRMs excel at generalizing a reduced number of observed points

into an infinite number of interlinked Gaussian distributions. They
are heavily used in aerospace applications, as demonstrated by

Ahmed et al. [21]. Ahmed et al. made use of variational heterosce-
dastic GPRMs to extend the wind-tunnel data, and thus created a
larger more refined model. We sample 100 Gaussian distributions

from these variational heteroscedastic GPRMs (VHGPRMs), in-
creasing with artificial data the size of the collective-Gaussian model
used to define a safety envelope.
In Figs. 14 and 15, we show a comparison between safety enve-

lopes defined using the distributions computed from wind-tunnel

experiments and safety envelopes from artificially generated data
from GPRMs. With a sufficiently high sample resolution, the
z-predictability region becomes a single interval with no gaps, even

with small values of z. This means that z takes a step back in its
influence on the metrics while τ takes full control. There is a signifi-
cant improvement in the coverage and quality of the GPRM

extended safety envelopes. For a speed of 14 m∕s, the coverage
improved from 65.513 to 81.520 and the quality improved from

63.997 to 77.181; see Fig. 14. A similar improvement can be seen
for an airspeed of 17 m∕s; see Fig. 14. Preliminary results for other
airspeeds, including 6 and 20 m∕s, indicated the same trend of

improvements for the metrics. The lack of figures for other airspeeds
is due to the nature of GPRM training and the ease with which they
overfit, thus producing unnaturalistic results.
Even with these disadvantages, VHGPRMs’ results are hard to

match with other techniques. Assuming that VHGPRMs generate

artificial distributions as if they were produced by a wind tunnel, any
sample we take from them will define a well-behaved safety
envelope. With this assumption in place, Theorems 1, 2, and 4 apply

equally to GPRM synthetic data, where the mean and standard
deviation in those expressions can be replaced by the predictive
moments of a GPRM. Thus, VHGPRMs add some flexibility in

defining safety envelopes,where themoments used for defining them
can either come fromexperimental data or fromproperly trained data-
driven VHGPRMs.
In a similar framework, Gaussian process classification models

(GPCMs; see Ref. [22]), which produce predictive probabilities
instead of predictive moments, can be used to “interpolate” the
conditional probability for stall in order to allow for “higher-

resolution” probabilities across the different angles of attack. This

Fig. 11 Haskell autogenerated code from z-predictable Agda code shown in Fig. 9.
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approach elegantly allows for the application of Theorem 3 onto

GPCMs. Thus, with properly trained Gaussian process models (for

regression and classification), the concept of safety envelopes can be

expanded beyond experimental data using data-driven model-based

predictive moments and probabilities.

C. Multivariate Safety Envelopes

The advantage of safety envelopes is their generalizability to
multiple dimensions of input data. From the eight available sensors,
we chose two sensors with low correlation between them: sensors 1
and 7. We proceeded to compute the mean and covariance matrix for
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each flight state given the sensors’ data. Choosing lowly correlated
sensors allows us to show safety envelopes more clearly because
highly correlated sensors show up as lines on the plots. Additional
tests revealed no significant difference in the particular selection of
sensors concerning the metrics.
Figure 16 shows the safety envelope defined for a bivariate normal

distribution-based model. Computing the error and accuracy for
multivariate-normal distributions required the use of a Monte Carlo
simulation as opposed to straightforward computing of the regions
from the cumulative distribution function, as in the univariatemodels.
Error and quality improve as we increase the number of sensors

used to define safety envelopes. In fact, for the univariate case (see
Fig. 13) error is 0.877% and quality 85.064%, while for the bivariate
case (see Fig. 16b) error is 0.047% and quality 91.361%. Safety
envelopes perform better (with less error and higher model quality)
for the case of 20 m∕s, even at nonoptimized values of z and τ. The
difference is heightened when all flight states are considered and
where all metrics improve: accuracy � 78.959%, error � 0.994,
and quality � 71.449% for the multivariate case against accuracy �
70.216%, error � 3.339, and quality � 49.995% for the univari-
ate case.

VI. Related Work

Jackson et al. [23] defined a novel concept to determine when a
Markov process is safe. From a dataset, they constructed a Markov
process that they restricted given a parameter ϵ. Note that ϵ is used

similarly for safety envelopes z; namely, it restricts safe behavior to a

region where the behavior is likely to occur and discards anything

else outside this region as possibly problematic. Specifically, they
checked whether the current state of a Markov model was within the

range of the possible things the model should do parameterized by ϵ.
Safety envelopes take a step further and include a classification step,

which is τ-confidence, which is firmly grounded on Bayes’s rule.
HOL and Isabelle are interactive proof assistants with a rich

history of proofs from discrete and continuous probability theory

[24–27]. These libraries implement measure theory; discrete, con-

tinuous, and normal random variables; and many other fundamental
theorems on probability theory like the central limit theorem: all of

them built from the bottom up in a robust verifiable environment.

In our work, we followed a top-down methodology in which we

assume the correct formalization of well-known real number theory
and probability theory. In this way, we differ from previous work by

implementingmore complex structures thanwhat could be done in a

limited time with a bottom-up approach. Agda, as opposed to HOL

and Isabelle, is a programming language and proof assistant built on
top of a constructive theory [28]. It is possible to write code and

create an executable with very little extra work in Agda as opposed

to HOL and Isabelle. We were able to produce a simple monitor

from the formalization on about 90 lines of Haskell code and an
additional 130 lines of Agda. Copilot [29] and PILOTS [17,30]

have presented strategies to detect and recover from faulty data

streams due to hardware errors in airplane systems and dynamic

data-driven applications systems, respectively. Those systems do

0

3

6

9

12

15

18

A
n
g
le

o
f

at
ta

ck

Safety envelopes (airspeed 14 m/s)

=65.513%

=65.310%

=0.203%

=63.997%

0

1

(
|

=
)

0 10 20 30 40 50

Signal energy ( 2 · )

S
E

0

3

6

9

12

15

18

A
n
g
le

o
f

at
ta

ck

GPRM extended safety envelopes (airspeed 14 m/s)

=81.520%

=81.034%

=0.486%

=77.181%

0

1

(
|

=
)

0 10 20 30

Signal energy ( 2 · )

S
E

Coverage

Accuracy

Coverage

Accuracy

Error

Quality

Error

Quality

Fig. 14 Safety envelopes at 14 m∕s with parameters z � 0.3 and τ � 0.9: a) original data, and b) GPRM-generated data.

0
2
4
6
8

10
12
14
16

A
n
g
le

o
f

at
ta

ck

Safety envelopes (airspeed 17 m/s)

=66.649%

=66.422%

=0.226%

=64.935%

0

1

(
|

=
)

0.0 2.5 5.0 7.5 10.0

Signal energy ( 2 · )

S
E

0
2
4
6
8

10
12
14
16

A
n
g
le

o
f

at
ta

ck

GPRM extended safety envelopes (airspeed 17 m/s)

=80.907%

=80.535%

=0.372%

=77.586%

0

1

(
|

=
)

0.0 2.5 5.0 7.5 10.0

Signal energy ( 2 · )

S
E

Coverage

Accuracy

Error

Quality

Coverage

Accuracy

Error

Quality
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not yet incorporate formal verification, and therefore depend on the
quality of the software implementation, the testing environment,
and the robustness of the programming language.
VeriDrone [31] and other Coq initiatives (e.g., Ref. [32]) have

incorporated formal verification into working systems to formally
prove properties like maximum speed restrictions and correct behav-
ior according to a specification. These approaches follow a similar
framework to ours (namely, the use of software verification tech-
niques for the creation of verified pieces of code) but are different in
their end goal: the implementation of verified control systems. Safety
envelopes do not steer a system in a specific direction; rather, they are
meant as a warning system and input for the control system. Another
approach for the verification of control systems is DryVR [33], in
which a system defined as a labeled, directed acyclic graph is
determined to behave safely (or not) with the help of simulation
trajectories and a blacklist of unsafe states. Although safety enve-
lopes are not an approach to building control systems, they can be
used to find unsafe states, which can be later used as blacklists in
systems like DryVR.
The concept of a region restricted by parameters where an aircraft

can operate safely appears in the literature time and time again. Such
is the case of Jeannin et al. [34], who defined “safe regions” for an
aircraft to operate where no collisions are expected, assuming
correct behavior; or Paul et al. [35] with the concept of “correctness
envelopes,” which determine the conditions for a system to satisfy
different correctness properties. Safety envelopes can be used on
their own, but they can shine when incorporated into larger frame-
works of control systems such as the simplex architecture [36]. The

simplex architecture’s goal is to allow for safe control upgrades of
complex control systems. A safety region in the simplex architec-
ture delimits the region where a system can be controlled. If the
experimental controller gets close to the boundary of the safe
region, a robust simpler controller takes over. Safety envelopes
could be used to define a tighter region within the handwritten
safety region of simplex architecture or as a replacement.
Breese et al. [20] presented the idea of formal safety envelopes

from which this work sprung into life. They proposed a first-order
logic-based definition for safety envelopes in which only one param-
eter is necessary (z) and not two (z and τ). Cruz-Camacho et al. [37]
extended safety envelopes to encompass both predictability and
classification, which result in higher tunability, thanks to the extra
parameter τ. Based on the work of Breese et al. [20], Paul et al. [35]
proposed a metric for safety envelopes using preprocessed data as
input. This paper combines and extends all of these priorworkswith a
detailed, justified, and generalized definition of safety envelopes; in
particular, we extended Cruz-Camacho et al.’s [37] safety envelopes
to multivariate distributions and GPRM-generated data from Ahmed
et al. [21].

VII. Conclusions

Anovel, formally verified concept was presented for classification
given a statistical model for one or multiple real-numbered data
inputs. Safety envelopes encode two conditions a safe classification
must have: z-predictability, whether an input value is consistent with
a model; and τ-confidence to quantify confidence in a classification.
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Four metrics to compare different models and parameters of safety
envelopes were given: coverage, accuracy, error, and quality. Metrics
are fundamental to finding the proper parameters a safety envelope
should have. A formalization of safety envelopes in Agda was
presented; and with it, four formal proofs that tie z-predictability
and τ-confidence with any input value. Formally verified Haskell
code was generated from the Agda formalization; and from it, an
executablewas produced to process a streamof data.How to integrate
GPRMs into safety envelopes was explored, and their results were
showcased as the extensibility of safety envelopes to use synthetic
data. Safety envelopes were shown to work seamlessly with one as
well as two input value dimensions, i.e., with models constructed out
of univariate or bivariate normal distributions.
Future work will include extending safety envelopes to correct

faulty inputs where physical or logical redundancy is available, as in
the case of multiple or heterogeneous sensor inputs; finding the
minimum number of flight states needed to construct a good model
to reduce the number of physical experiments necessary to perform;
studying the impact of better-informed priors in the quality of the
models; and finding all possible sources of numerical instability that
would make floating-point numbers a bad fit as approximations for
real numbers.

Appendix: Conditional Probability Deduction

In this Appendix, we present a derivation for the equation to
compute the conditional probability P�tagjX � x�, which was
given as

P�tagjX � x� �
P

θ∈Θpdfθ�x�pΘ�θ�P�tagjθ�P
θ∈Θ pdfθ�x�pΘ�θ�

(A1)

This is possible thanks to Bayes’ rule for classification. Namely,
we can rewrite the expression as

P�tagjX � x� � fXjtag�x�P�tag�
fX�x�

(A2)

The marginal probability fX�x� can be computed as

fX�x� �
X
θ∈Θ

fX;θ�x� �
X
θ∈Θ

fXjΘ�θ�x�pΘ�θ� (A3)

wherefXjΘ�θ�x� is the probability density function for the state θ, i.e.,
fXjΘ�θ�x� � pdfθ�x� with parameters from Xθ. Note that X is the

same as the space Ξwhere x lies, whereas Xθ is the random variable
associated with the state θ.
The conditional probability fXjtag�x� is computed in a similar

manner as the marginal probability. First, we apply the law of total
probability and then Bayes’s rule again:

fXjtag�x� �
X
θ∈Θ

pdfθ�x�P�Θ � θjtag�

�
X
θ∈Θ

pdfθ�x�
pΘ�θ�P�tagjΘ � θ�

P�tag� (A4)

where P�tagjΘ � θ� is the probability that a specific configuration
(flight state) is tagged with tag (e.g., to produce stall). This proba-
bility is either zero or one, and it is given by expert judgment.
With the marginal [Eq. (A3)] and conditional probabilities

[Eq. (A4)] in place, we can rewrite Eq. (A2) as

P�stalljX � x� �
P

θ∈Θpdfθ�x�pΘ�θ�P�stalljθ�P
θ∈Θ pdfθ�x�pΘ�θ�

(A5)

which is the expression shown previously in Eq. (A1).
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